Journal of Power Sources 330 (2016) $45-54$ $45-54$

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

$PbLi₂Ti₆O₁₄$: A novel high-rate long-life anode material for rechargeable lithium-ion batteries

Peng Li, Shangshu Qian, Haoxiang Yu, Lei Yan, Xiaoting Lin, Ke Yang, Nengbing Long, Miao Shui, Jie Shu*

Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China

- \bullet PbLi₂Ti₆O₁₄ is reported as lithium storage material for the first time. \bullet PbLi₂Ti₆O₁₄ exhibits outstanding cy-
- cle and rate performances. Capacity retention of 87.5% can be
- retained after 1000 cycles at 1000 mA g^{-1} .
- Reversibility of $PbLi₂Ti₆O₁₄$ is studied by in-situ and ex-situ methods.

Article history: Received 11 June 2016 Accepted 31 August 2016

Keywords: Lead lithium titanate Anode material Electrochemical behavior In-situ X-ray diffraction Lithium ion batteries

ABSTRACT

As a novel anode material, PbLi₂Ti₆O₁₄ is prepared by a traditional solid state method at a calcination temperature of 900 °C. Structural analysis and electrochemical tests prove that PbLi₂Ti₆O₁₄ possesses a good crystallinity and superior performance. PbLi₂Ti₆O₁₄, composed of particles with 400 nm in length and 300 nm in width, exhibits an initial charge capacity of 155.1 mAh g^{-1} at 100 mA g^{-1} and maintains at 147.9 mAh g^{-1} after 100 cycles, with capacity retention as high as 95.4%. Especially, the reversible capacity of PbLi₂Ti₆O₁₄ can stabilize at 101.6 mAh g^{-1} after 1000 cycles at a high current density of 1000 mA g^{-1} , with capacity retention of 87.5%. Besides, the lithium storage behavior in PbLi₂Ti₆O₁₄ is also studied by various in-situ and ex-situ methods. It is found that the lithiation/delithiation process in PbLi₂Ti₆O₁₄ is a highly reversible reaction. All these results demonstrate that PbLi₂Ti₆O₁₄ may be an impressive anode material in the near future.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In modern society, the energy storage appliances are critical technologies to address the global energy shortage and emerging environmental issues $[1,2]$. As one of the most important energy storage systems, rechargeable lithium ion batteries (LIBs) attract great attention and have actively changed our lifestyles $[3-9]$ $[3-9]$. With

E-mail address: sergio_shu@hotmail.com (J. Shu).

<http://dx.doi.org/10.1016/j.jpowsour.2016.08.138> 0378-7753/© 2016 Elsevier B.V. All rights reserved.

widely application in grid storages, portable devices and electric vehicles, the LIBs still have many drawbacks such as low power, high cost and safety issues [\[10\]](#page--1-0). Like graphite, this anode material currently used in commercial LIBs has a small lithium diffusion coefficient and experiences large volume variation of 9% during the lithium insertion/extraction process [\[2,11\]](#page--1-0). Low Li-ion diffusion coefficient indicates a higher ion transportation resistance in the bulk electrode, while large volume change during lithium intercalation/de-intercalation signifies an inferior cycling stability Corresponding author. These drawbacks will limit the electrochemical corresponding author.

performance of LIBs by a large margin. In addition, the Li-ion operating potential of graphite (approaching 0.2 V vs. Li^{+}/Li) is close to the lithium electroplating potential, which could cause serious safety issues $[14-18]$ $[14-18]$ $[14-18]$. Furthermore, the low intercalation potential leads to electrolyte reduction and decomposition, which contribute to the formation of solid electrolyte interphase (SEI) layer, and could also introduce kinetic problems for fast charge and discharge [\[19,20\].](#page--1-0) Therefore, it is of great demand to develop new anode materials that possess the desired high lithium ion diffusion, good electrical conductivity and outstanding safety.

Among numerous explored anode materials, titanates especially like $A_2Ti_6O_{13}$ (A = H, Li, Na, K) [\[21](#page--1-0)–[24\],](#page--1-0) Li₂MTi₃O₈ (M = Zn, Co, Mg, Mn etc.) [\[25](#page--1-0)–[30\]](#page--1-0), and $Li₄Ti₅O₁₂$ [\[31](#page--1-0)–[36\]](#page--1-0) have gained large numbers of investigations due to their low cost, safety, stable structure, chemical stability and high Li-ion conductivity. Especially for $MLi₂Ti₆O₁₄$ (M = Sr, Ba, 2Na), there are recently new developed lithium storage compounds with a long and flat working potential platform at about 1.3 V [\[37](#page--1-0)–[54\].](#page--1-0) The investigations of $MLi₂Ti₆O₁₄$ $(M = Sr [37-43], Ba [43-47], 2Na [48-54])$ provide new choices for the application of anode materials considering its superior electrochemical properties, such as low operating potential and high theoretical capacity. I. Belharouak et al $[45]$ first reported the crystal structure and electrochemical properties of $MLi₂Ti₆O₁₄$ (M = Sr, Ba) as anode materials for secondary LIBs. They described that the $MLi₂Ti₆O₁₄$ (M = Sr, Ba) electrodes could deliver a stable reversible capacity of about 140 mAh g^{-1} with an operating platform at 1.4 V. H.S. Li et al $[42]$ synthesized ultralong SrLi₂Ti₆O₁₄ nanowires by a simple electrospinning process. It is found that $Srli₂Ti₆O₁₄$ nanowires show superior electrochemical performance with a retained capacity of 101 mAh g^{-1} at 10C after 1000 cycles, which makes it become possible alternative anode material to $Li₄Ti₅O₁₂$. X.T. Lin et al $[41,47,53,54]$ also fabricated SrLi₂Ti₆O₁₄, BaLi₂Ti₆O₁₄ and Na₂Li₂Ti₆O₁₄ particles through solid state reaction and gave a detailed investigation of them, including their lithium-ion insertion/extraction mechanisms, structural evolutions and electrochemical properties during repeated charge/discharge cycles. Although PbLi₂Ti₆O₁₄ was initially presented by I. Koseva in 2005 [\[44\]](#page--1-0), no report can be found about its lithium storage behaviors. Compared with SrLi₂Ti₆O₁₄ and BaLi₂Ti₆O₁₄, PbLi₂Ti₆O₁₄ is an isostructural titanate in the $MLi₂Ti₆O₁₄$ series. Therefore, it is expected that $PbLi₂Ti₆O₁₄$ may be also a good anode candidate for rechargeable LIBs.

In this paper, we fabricate the $PbLi₂Ti₆O₁₄$ particles via a simple solid state reaction method. The surface morphology, crystal structure, electrochemical property and lithium-ion insertion/ extraction mechanism of $PbLi₂Ti₆O₁₄$ are thoroughly investigated by using various in-situ and ex-situ characterization techniques. The step-by-step lithium-ion transportation process in $PbLi₂Ti₆O₁₄$ is clarified during the charge/discharge cycles. The outstanding cycling and rate properties of $PbLi₂Ti₆O₁₄$ in our present work (101.6 mAh g^{-1} at 1000 mA g^{-1} after 1000 cycles) demonstrate that $PbLi₂Ti₆O₁₄$ is a promising high rate long life anode material.

2. Experimental

We adopt a simple solid-state reaction process to prepare PbLi₂Ti₆O₁₄ by using (PbCO₃)₂ Pb(OH)₂ (Aladdin, 99.5%), Li₂CO₃ (Aladdin, 99.5%), and $TiO₂$ (Aladdin, 5-10 nm, 99.5%) as starting materials. The two-step synthetic process used to prepare PbLi₂₋ $Ti₆O₁₄$ is schematically illustrated in Fig. 1a. In the first step, the stoichiometric amounts of $(PbCO₃)₂ \cdot Pb(OH)₂$, Li₂CO₃, and TiO₂ were dispersed in anhydrous ethanol and then planetary ball

Fig. 1. (a) Schematic illustration of the formation of PbLi₂Ti₆O₁₄. (b) XRD pattern of PbLi₂Ti₆O₁₄. (c) XRD Rietveld refinement profile of PbLi₂Ti₆O₁₄.

Download English Version:

<https://daneshyari.com/en/article/5150239>

Download Persian Version:

<https://daneshyari.com/article/5150239>

[Daneshyari.com](https://daneshyari.com)