FISEVIER

Contents lists available at ScienceDirect

Solid State Ionics

journal homepage: www.elsevier.com/locate/ssi

Flexible dye-sensitized solar cells based on Ti/TiO₂ nanotubes photoanode and Pt-free and TCO-free counter electrode system

M. Klein a,b,*, M. Szkoda c,*, M. Sawczak A. Cenian A. A. Lisowska-Oleksiak C, K. Siuzdak A.

- a Center for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, Gdansk 80-231, Poland
- b Department of Physics of Electronic Phenomena, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, Gdansk 80-233, Poland
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, Gdansk 80-233, Poland

ARTICLE INFO

Article history: Received 31 July 2016 Received in revised form 3 January 2017 Accepted 16 January 2017 Available online 22 January 2017

Keywords: DSSCs Counter electrode Titania nanotubes pEDOT

ABSTRACT

Flexible dye-sensitized solar cells (DSSCs) are getting more attention compared to standard glass covered DSSCs due to their unique commercial applications (e.g. tents or sail surfaces) and the possibility of rolling up into a small, portable device. In this work, titania nanotubes (TiO₂ NT) modified with titania nanoparticles (TiO₂ NP) were photoelectrochemically characterized as an anode for flexible dye-sensitized solar cells. The morphology of the prepared electrode materials was inspected using scanning electron microscopy. Electrochemical activity of titania in contact with anaqueous electrolyte containing iodine species was investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry (CA). The anode with deposited TiO₂ NP exhibits enhanced efficiency of photocurrent generation in comparison to pure titania NT. The new type of comb-shaped Ti electrode with poly(3,4-ethylenedioxythiophene):poly(2-styrenesulphonate) (pEDOT:PSS) layer deposited onto the PET foil substrate was proposed as a counter electrode and compared with a conventional Pt catalytic layer as well as with a typical Pt/FTO counter electrode. Overall photoconversion efficiency of pEDOT-based counter-electrode DSSC reached 0.61% and was almost 40% higher than for counter electrode with Pt.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Since the breakthrough paper by O'Regan and Grätzel in 1991 [1] dye-sensitized solar cells (DSSCs) are considered as a promising photovoltaic technology mainly due to utilization of low-cost materials and relatively high energy conversion efficiency. A typical DSSC consist of two electrodes deposited onto transparent conductive oxide (TCO) glass substrates and a liquid electrolyte containing I^-/I_3^- active redox centers between them. A dye-sensitized porous nanocrystalline TiO₂ film forms the anode while a thin catalytic platinum (Pt) layer acts as a counter electrode [2]. To date the photoconversion efficiency of over 14% for a standard [3] and almost 9% for a flexible [4] DSSCs has been reported. To reach the demands of industry for novel applications in building-integrated systems, a roll-to-roll mass production of flexible dye-sensitized solar cells have become an interesting opportunity [5]. Another important issue is the total production cost of a DSSC module. It has been reported that the cost of TCO glass substrates is more than 20% of the cost of the entire device [6]. Moreover, the platinum layer (besides excellent catalytic properties) stays also as a cost determining element, and the price for platinum, a noble metal, fluctuates strongly with the political and economic situation [7,8]. Therefore, lightweight, inexpensive, flexible and TCO-free substrates such as plastic (mainly polyethylene terephthalate, PET) or metal (titanium, Ti) or stainless (steel, StSt) foil provide a good alternative [5,9,10]. As the anode a Ti foil is usually used, mainly due to its superior corrosion resistance of passive TiO₂ film [11,12], while StSt or Ti mesh with carbon-based [13] or conductive polymer (usually a poly(3,4-ethylenedioxythiophene)) are utilized as the counter electrode [14,15].

In this paper we report on a flexible, dye-sensitized solar cell consisting of a photoanode formed by titanium dioxide nanotubes grown directly onto Ti plate and then modified with TiO₂ nanoparticles. The comb-shaped Ti pattern deposited onto PET foil forms a counter electrode (Fig. 1). Instead of the commonly used platinum layer, a thin pEDOT:PSS film was applied and tested. Performed electrochemical studies allowed to compare the activity of titania nanotubes with and without deposited TiO₂ nanoparticles which should improve photocurrent and photovoltaic performance [16–18]. The catalytic properties of pEDOT thin film deposited on counter electrode was tested and compared with a conventional Pt catalytic layer. Finally, the overall photoconversion efficiency of complete DSSC device was measured under the standard illumination conditions.

^{*} Corresponding author.

E-mail addresses: mklein@mif.pg.gda.pl (M. Klein), mariusz-szkoda@wp.pl (M. Szkoda).

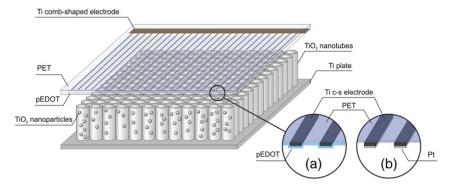


Fig. 1. Schematic diagram of a flexible dye-sensitized solar cell. Close-up of a counter electrode with indicated (a) pEDOT:PSS and (b) Pt cathodic layer.

2. Experimental

2.1. Ti/TiO₂ NT/TiO₂ NP anode preparation

Highly ordered titania nanotubes were prepared via a two-step electrochemical anodization of a Ti plate (Strem, 99.7%) in a fluoride-containing solution. The procedure that leads to the formation of TiO₂ nanotubes was described in our previous report [19]. Anodization was performed in a two-electrode configuration with a platinum grid as a cathode and the Ti plate acting as an anode. Both steps of anodization were performed under the same conditions: temperature (23 °C), electrolyte composition (0.27 M NH₄F in 1%/99% v/v water/ethylene glycol solution) and process parameters (40 V, 2 h). After the first step of anodization, the as-formed nanotubes were removed by overnight etching in an oxalic acid solution (0.5 wt.%). Afterwards, the second anodization process was performed. To remove surface debris, the titanium plates covered with nanotubes were immersed in 0.05 wt.% HF for 180 s. The as prepared amorphous TiO2 nanotubes were transformed into the anatase crystalline phase by thermal annealing in a tube furnace at 450 °C for 2 h (heating rate 2 °C min⁻¹). In order to decorate nanotubes by titania nanoparticles the annealed electrodes were treated with 40 mM TiCl₄ agueous solution at 75 °C for 30 min, washed with deionized water, and heated again up to 450 °C for 2 h (heating rate $2\,^{\circ}\text{C min}^{-1}$). After cooling down to 80 $^{\circ}\text{C}$ the electrodes were immersed in a $1 \cdot 10^{-4}$ M solution of N719 dye (Solaronix) in absolute ethanol at room temperature overnight in order to perform sensibilization process of titania surface by dye molecules.

2.2. Ti/PET counter electrode preparation

Counter electrodes (CE) were fabricated by magnetron sputtering (Quorum Q150T) of 100 nm thick Ti layer, through a comb-shaped shadow mask, onto PET foil substrate. The titanium strips having a width of 100 μ m arranged in a 1 mm-parallel in intervals were connected to the collecting electrode (Fig. 1). During investigation two different catalytic layers deposited onto CE were compared: a) pEDOT conductive polymer deposited by electrochemical polymerization and b) platinum (Pt) layer (10 nm thick) magnetron sputtered similarly as Ti (compare Fig. 1a and b). Moreover, those two counter electrodes were compared with a typically used Pt/FTO electrode prepared by a thermal decomposition of H_2 PtCl₆ (450 °C for 30 min).

The electrochemical deposition of pEDOT:PSS was performed from an aqueous solution containing 0.1 M NaPSS and 0.001 M EDOT, by potentiostatic polymerization at the potential of 1.2 V vs. Ag/AgCl (0.1 M KCl) consuming the charge of 50 mC cm $^{-2}$. The Ti/PET constituted as a working electrode while a platinum mesh was used as a counter electrode. Finally, the working comb-shaped electrode was washed with deionized water and dried in air.

2.3. Cell assembly

A DSSC flexible device was assembled from the photoanode and the counter electrode connected using $60~\mu m$ thick, hot-melted, ionomeric foil (Solaronix), and an electrolyte was injected within a hole in the photoanode which was afterwards sealed with an adhesive tape. The redox electrolyte consisted of 0.6~M 1-propyl-3-methyl-imidazolium iodide (Aldrich), 0.03~M iodine (POCh), 0.1~M guanidine thiocyanate (Aldrich) and 0.5~M 4-tert-butylpiridine (Aldrich) in acetonitrile (POCh) [8].

2.4. Electrodes characterization

Electrochemical measurements (CA, CV, LSV) of TiO₂ NT anodes with and without TiO₂ NP were carried out using an AutoLab PGStat 302N potentiostat-galvanostat system (Methrom, Autolab) in a standard three-electrode setup with prepared electrode materials serving as the working electrodes (geometric surface area in contact with electrolyte equals 0.3 cm²). The deaerated 0.5 M aqueous solution of K₂SO₄ was used as an electrolyte. An electrochemical cell was equipped with a quartz window enabling illumination of the electrode surface during photoelectrochemical measurements. The photoactive layers were irradiated with a 150 W Xenon lamp (Osram XBO 150) equipped with AM 1.5 filter. An automated light chopper with a period of 20 s was used for modulation of illumination. The irradiance of incident light was measured using a Si reference cell (ReRa) to be 100 mW cm⁻². The photocurrent measurements were carried out at +0.5 V vs. Ag/AgCl (0.1 M KCl). The photovoltaic characteristic of the cells was registered under the same illumination conditions (without the chopper) and photocurrent density-photovoltage (J-V) curves were recorded on a SourceMeter (2400, Keithley). Solar cells were tested under back side illumination, i.e. through the counter electrode. The transmittance spectrum of a PET foil and FTO was measured on a Lambda 35 UV-vis spectrometer (Perkin Elmer), while comb-shaped Ti electrode light transmittance (LT) was calculated from the following formula [20]:

$$LT(\%) = \frac{\frac{1}{2}TB \times TL}{\frac{1}{2}TB \times TL + 4 \times \left(\frac{1}{2}W\right) \times \sqrt{\left(\frac{1}{2}TB\right)^2 + \left(\frac{1}{2}TL\right)^2}} \times 100\%, \quad (1)$$

where: TB = 1 mm, TL = 4 mm and W = 100 μ m. The cyclic voltammograms of counter electrodes: pEDOT/Ti and Pt/Ti were measured in a three-electrode electrochemical configuration using the same setup as for photoanode characterization. The pEDOT/Ti (or Pt/Ti) was applied as a working electrode, while a Pt mesh as a counter electrode and an Ag/AgCl cell as a pseudo-reference electrode immersed in an acetonitrile solution of 10 mM Lil, 1.0 M I₂ and 0.1 M LiClO₄, as used in Ref. [14]. The surface morphology and the cross-section of Ti/TiO₂

Download English Version:

https://daneshyari.com/en/article/5150457

Download Persian Version:

https://daneshyari.com/article/5150457

Daneshyari.com