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Abstract
This paper studies the power control problem in cognitive radio networks where a primary user and multiple secondary 
users (SUs) coexist. Imperfect channel state information is considered. The objective is to maximize the SUs' sum rate 
while guaranteeing the proportional rate fairness among SUs. The problem under consideration is non-convex. By doing a 
transformation, it is equivalently changed to a second-order cone programming problem, which can be efficiently solved by 
existing standard methods. Simulations have been done to verify the network performance under different channel uncertainty 
conditions.
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1. Introduction

As the rapid development of advanced technologies on 
wireless communications, a lot of high transmission rate 
services and applications have emerged, which increases 
the demand for spectrum. On the other hand, experimental 
results have shown that traditional fixed spectrum allocation 
schemes yield inefficient spectrum utilization [1]. To 
improve the spectrum utilization and provide high quality of 
services (QoS), cognitive radio networks (CRNs) that allow 
the unlicensed secondary users (SUs) share the licensed 
spectrum with the licensed primary users (PUs) have been 
proposed.

Spectrum allocation problem in CRNs has drawn large 
attention in recent years [2-7]. In most of these works, 
it is assumed that perfect channel state information 
(CSI) is known [2-4]. However, in practice perfect CSI, 
especially the channel gain from the SUs to PUs, cannot 
be obtained due to the lack of cooperation among PUs and 
SUs. Therefore, this motivates the research on resource 
allocation problem in CRNs with imperfect CSI [4-6]. 
Mitliagkas et al. investigated the joint power control and 
admission control problem in [5]. Kim et al. in [6] studied 
the sum rate maximization problem under the total power 

and interference power constraints. Parsaeefard et al. in [7] 
worked on the social utility of SUs while satisfying each 
SU's signal to noise ratio requirement and interference 
power constraint. However, all those works do not explicitly 
consider SUs' different transmission rate requirements 
and fairness issue, thus they are not suitable for a situation 
where different SUs have different transmission rate 
requirements. To flexibly allocate transmission rates to each 
SU and guarantee fairness among SUs, we will investigate 
the resource allocation problem with proportional rate 
fairness requirements in CRNs under imperfect CSI.

In this paper, we will investigate the power control 
problem in CRNs, where imperfect CSI from secondary 
BS to the primary user is considered. The objective is to 
maximize the SUs' sum rate subject to the proportional rate 
fairness constraint among SUs, the total power constraint 
at secondary BS, and the interference power constraint 
to the PU. The problem is formulated as a non-convex 
optimization problem. By doing a transformation, the 
problem is changed to an equivalent second-order cone 
programming (SOCP) problem, which can be efficiently 
solved by existing standard methods. Simulations have 
been done to demonstrate the network performance under 
different channel uncertainty conditions.
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2. System Model and Problem Formulation 

 
Consider a network setting where a PU and K SUs coexist. 
Downlink transmission from the secondary base station 
(BS) to SUs is considered. The SUs can adopt the available 
channels that are licensed to the PU for its own data 
transmission. It is assumed that the total available 
bandwidth is divided into multiple non-overlapping 
channels. And each SU is allocated one such channel for its 
own data transmission. 
The channel gain from the secondary BS to SU k , 

 Kk ,,2,1  is denoted by kh . k  is the variance of the 
additive white Gaussian noise in that channel. For 
notational brevity, let kkk hH / . The data rate for 
SU k isdenoted by 

 kkk PHR  1log5.0 2 ,           (1) 

where kP is the transmission power for SU k at BS. 
To protect the PU’s QoS, the interference to the PU should 
not be greater than the given threshold thT , which can be 
expressed by 

 


K

k thkk TdP
1

,               (2) 

Where kd is the channel gain for SU k from the secondary 
BS to the primary user. In practice, imperfect channel 
information cannot be obtained, especially the channel gain 
from the secondary users to the primary users. Because 
generally there is a lack of cooperation between primary 
user and SUs, and thus the primary user will not feedback 
the CSI to the SUs. Ellipsoidal uncertainty will be adopted 
to model the uncertainty of channel gain kd . Let us define 

vector  TKddd 21d . Adopting the ellipsoidal 
uncertainty [5], the uncertainty region of d  can be 
expressed by  

 1:
2
 uDudd ,          (3) 

where d is the nominal value of d , D is a KK  matrix, 
and u is a K dimensional vector. To facilitate the following 
analysis, let us define a vector  TKs PPP 21P , 
and then (2) can be rewritten as 

ths
T TPd .                 (4) 

Since d  satisfies (3), to guarantee (4) hold, it is equivalent 
to make sure the following inequality (5) holds, 

  ths
T TdPdsup .            (5) 

From (5), by invoking the Cauchy-Schwarz inequality, one 
gets that 
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We desire to study the power control problem to maximize 
the sum rate of SUs under several constraints. The problem 
under consideration can be formulated as follows, 
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Where C1 represents the BS total power constraint, 
and thP is the power threshold at the BS. C2 indicates that 
the consumed power for each SU at the BS should be non-
negative. C3 is the interference power constraint to the 
primary user. C4 is the proportional rate fairness constraint; 

K ,,, 21  are given constants, and they indicate the 
proportional rate requirements of SUs. C5 represents the 
SU’s transmission rate constraint. 
 

3.  Optimal Solution 

 
Problem (7) is a non-convex optimization problem since the 
nonlinear equality constraint C5. To make the problem easy 
to solve, we will transform problem (7) into its equivalent 
form. 
By replacing the equality constraint in C5 by an inequality 
constraint  

 kkk PHR  1log5.0 2 ,          (8)  
problem (7) becomes 
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Problem (9) is an SOCP problem, since its objective 
function is a linear function, its constraint set is a convex set, 
and C3 is a second-order cone constraint. A proposition will 
be given in the following to show that the optimal solution 
of problem (9) satisfies kR   kkPH1log5.0 2 , and thus 
problem (9) is equivalent to problem (7). Hence, we can 
solve Problem (9) instead of Problem (7). 
 
Proposition 1. The rates that optimize problem (9) satisfy 
that  kkk PHR  1log5.0 2 ,  Kk ,,2,1  .  
Proof. Because the objective function of problem (9) is an 
increasing function with respect to kR , and kR satisfies 
constraint C5’. It is easy to see that when problem (9) 
admits its optimal solution kR satisfies 
that  kkk PHR  1log5.0 2 , k  K,,2,1  .    ▅ 
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