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- ! . shown to feature an unusually high concentration of defects without suffering from severe loss of stabil-
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ity. This feature makes Zr-MOFs unique among MOF materials and is generating additional interest
around them. Defects have a significant impact on porosity, thermal properties, mechanical properties,
Keywords: Lewis and Brensted acidity. Researchers have quickly recognized that defects can be engineered to tune
xfgg;ﬂﬁamc frameworks the physical-chemical properties of Zr-MOFs, opening up new avenues for their practical application. The
Defects scope of the present review article is to provide a comprehensive account of the progress made in this
Porous materials field since the discovery of defects in Zr-MOFs in 2011 and to point out some relevant controversies

and open issues of fundamental nature that need to be addressed to improve the understanding of the
very nature of defects.
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1. Introduction

The discovery of zirconium-based metal-organic frameworks
(Zr-MOFs) Ui0-66, UiO-67 and UiO-68 in 2008 represented a mile-
stone in MOF chemistry [1]. These MOFs have general formula Zrg-
04(OH)4(L)s, where L can be either terephthalate (bdc?~, Ui0-66,
Chart 1), 4,4'-biphenyldicarboxylate (bpdc?>~, Ui0-67, Chart 1) or
4,4'-terphenyldicarboxylate (tpdc?~, Ui0-68, Chart 1), and their
crystal structure is based on the connection of hexanuclear [Zrg-
04(OH)4]'?* clusters via the bridging organic linkers, with each
cluster connected to twelve other clusters (Fig. 1). Since 2008,
the same [ZrgO4(OH)4]'?* clusters have been combined with
organic linkers having diverse geometrical and symmetrical fea-
tures, giving rise to a large family of Zr-MOFs featuring a wide
range of topologies (Fig. 2) [2-7].

Zr-MOFs display outstanding stability when compared to most
of the known MOFs based on different metal ions or clusters: they
are thermally stable up to 450°C [1,3,5], can be soaked in many
organic solvents and acidic aqueous solutions without suffering
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any significant damage [8,9] and retain their crystal structure
under high pressure [10,11]. Such superior stability has been
attributed to the strength of the carboxylate-Zr bond and to the
high degree of connectivity of the metal clusters and is extremely
attractive for practical applications. These applications include gas
sorption/separation [12-16], heterogeneous catalysis [17-21],
drug delivery [22-26], sensing [27-32] and electrochemistry
[33-36].

The success of Zr-MOFs is also due to the ease and versatility of
their synthesis [37]. This is demonstrated by the large number of
new procedures that have been developed since the first solvother-
mal synthesis in N,N-dimethylformamide (DMF) [1]: water- [38-
41], acetone- [42] and cyrene-based [43] synthesis, microwave-
assisted synthesis [44-47], mechanochemical synthesis [48,49],
chemical vapor deposition [50], spray-drying [51], continuous flow
synthesis [38,52-56]. The use of monocarboxylic acids (Chart 2) or
inorganic acids (HCl, HF) as modulators during synthesis is a pow-
erful tool that allows to obtain crystals with sizes ranging from the
micrometer to the low nanometer range [57-63]. Compounds that
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