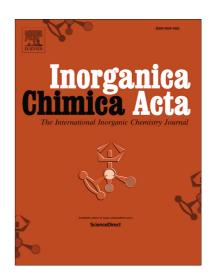
Accepted Manuscript

Research paper

Kinetics and mechanistic study of polynuclear platinum(II) polypyridyl complexes; A paradigm shift in search of new anticancer agents

Panyako Wangoli. Asman


PII: S0020-1693(17)30847-2

DOI: http://dx.doi.org/10.1016/j.ica.2017.08.065

Reference: ICA 17885

To appear in: Inorganica Chimica Acta

Received Date: 13 July 2017 Revised Date: 25 August 2017 Accepted Date: 30 August 2017

Please cite this article as: P.W. Asman, Kinetics and mechanistic study of polynuclear platinum(II) polypyridyl complexes; A paradigm shift in search of new anticancer agents, *Inorganica Chimica Acta* (2017), doi: http://dx.doi.org/10.1016/j.ica.2017.08.065

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Full Title	Kinetics and mechanistic study of polynuclear platinum(II)
	polypyridyl complexes; A paradigm shift in search of new anticancer agents
Article type	Research paper
Keywords:	Reactivity, rigidity, flexibility, methylene, associative
Corresponding author	Panyako Wangoli. Asman, Ph.D.
	University of KwaZulu-Natal,
	3209, Scottsville, Pietermaritzburg, South Africa
	E-mail: pwangoli@yahoo.com
	Cell-phone: +254720383345
Corresponding author's	University of KwaZulu Natal
institution	
Abstract	This paper reports on a mechanistic interaction between mononuclear
	and polynuclear platinum(II) complexes viz; phenyl-dichlorido-2,2'-
	dipyridinylaminediaquaplatinum(II) (PtC1); di-2-
	pyridylaminomethylbenzenediaquaplatinum(II) (PtC2); 1,3,5-
	tris(2,2'dipyridylamino)-benzenehexaquaplatinum(II) (PtC3); 1,3,5-
	tris(2,2'dipyridylmethylamino)benzenehexaquaplatinum(II) (PtC4);
	and 2,4,6-tris(2,2'-dipyridylamino)-1,3,5-triazinehexaquaplatinum(II)
	(PtC5) with thiourea nucleophiles under <i>pseudo</i> -first-order conditions
	as a function of nucleophile concentration and temperature using
	stopped-flow and UV-Vis spectrophotometric techniques. The
	reactivity of the complexes followed the order PtC5 > PtC1 > PtC3 >
	PtC2 > PtC4 with thiourea (TU) as the entering nucleophile. The
	study demonstrates that both rigidity and flexibility has an influence
	on the kinetics of the complexes and governs by both steric and
	electronic effects. Introduction of methylene groups destroys
	conjugacy and lowers the acidity of the complexes. Kinetic and DFT
	data concur and illustrates that electron donation by methylene bridge
	leads to stabilization of the complexes. The study further shows that
	replacement of the methyne (=CH-) groups with nitrogen atoms
	enhances reactivity. The small positive enthalpy of activation and
	large negative values of entropy of activation indicate an associative
	mode of activation for aqua ligand substitutions and dechelation
	processes.

Download English Version:

https://daneshyari.com/en/article/5151432

Download Persian Version:

https://daneshyari.com/article/5151432

<u>Daneshyari.com</u>