ARTICLE IN PRESS Inorganica Chimica Acta xxx (2016) xxx-xxx Contents lists available at ScienceDirect ### Inorganica Chimica Acta journal homepage: www.elsevier.com/locate/ica # Thyminato-bridged cyclic tetranuclear rhodium(III) complexes containing a sodium, calcium or lanthanoid ion as a template metal core Mika Sakate ^a, Ayana Kashima ^a, Haruka Hosoda ^a, Yukinari Sunatsuki ^{a,b}, Hiromi Ota ^b, Akira Fuyuhiro ^c, Takayoshi Suzuki ^{a,d,*} - ^a Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan - ^b Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan - ^cDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan - d Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan #### ARTICLE INFO #### Article history: Received 30 November 2015 Received in revised form 8 January 2016 Accepted 11 January 2016 Available online xxxx Keywords: Metallacalix[n]arene Template synthesis Heterometallic complexes Bridging isomers Crystal structure #### ABSTRACT Reactions of $[(Cp*Rh)_2(\mu-OH)_3]OH(Cp* = \eta^5-C_5Me_5^-)$ and thymine $(=H_2thym)$ in methanol in the presence or absence of a certain metal salt were examined. From the reaction mixture without any template metal salt, a dinuclear hydroxido-bridged complex bearing monodentate monodeprotonated thyminato ligands, $[\{Cp^*Rh(Hthym-\kappa N^1)\}_2(\mu-OH)_2]$, was isolated after recrystallization from water. In the presence of a metal salt MX_n {=NaPF₆, NaBF₄, NaNO₃, Ca(NO₃)₂, Ca(ClO₄)₂, La(NO₃)₃, Eu(NO₃)₃, Dy(NO₃)₃ and Er (NO₃)₃} were deposited orange crystals (1P, 1B, 1N, 2N, 2C, 3N, 4N, 5N and 6N, respectively) which consist of a thyminato(2-)-bridged tetranuclear Cp*Rh complex incorporating a M^{n+} cation, $[(Cp^*Rh)_4(\mu-thym)_4M]^{n+}$. All complexes were characterized by the single-crystal X-ray diffraction method, which revealed that homochiral aggregations of four Rh^{III} centers were achieved to give metallacalix[4]arene-type clusters. It was also observed that the bridging modes of thym²⁻ ligands were dependent on the template metal ion. In the Na⁺-incorporated clusters (1X, X = P, B or N) a thym²- ligand bridged two Rh^{III} and the third Na⁺ ions with a μ_3 -1 κ N¹:2 κ ²N³.0²:3 κ O² mode, while in the Ln³⁺ analogs (Ln = La, Eu, Dy or Er: **3N–6N**) thym^{2–} exhibited a different bridging mode, μ_3 -1 κN^1 : $2\kappa^2 N^3$, 0^4 : $3\kappa O^2$. In the cases of Ca²⁺-incorporated clusters, the bridging mode is further dependent on the associated anion; only the μ_3 -1 κN^1 :2 $\kappa^2 N^3$,0²:3 κO^2 -type cluster was obtained in the NO₃ salt (2N), but the ClO₄ salt (2C) afforded both types of the bridging clusters piled up alternatively in the crystals. The tetranuclear structures with a template metal cation, $[(Cp^*Rh)_4(\mu-thym)_4M]^{n+}$, are maintained in solution. The magnetic behaviors of the Dy^{3+} - and Er^{3+} -incorporated complexes (5N and 6N) are also reported. © 2016 Elsevier B.V. All rights reserved. #### 1. Introduction Metallacalix[n]arenes [1–7] are a promising class of compounds because of their fascinating properties for the size- and charge-selective capture of a specific molecule or ion, in addition to their magnetic, electrochemical and catalytic functionalities originated from the cyclic multi-metallic fragments. The most characteristic feature of metallacalix[n]arenes, as compared to the other matallamacrocycles or metallacrowns [8–14], is originated from the conformational flexibility of the bridging ligands [1]. In addition, since the unsymmetrical ligands bearing more than two donor sites are often utilized to construct the cyclic frameworks, there E-mail address: suzuki@okayama-u.ac.jp (T. Suzuki). http://dx.doi.org/10.1016/j.ica.2016.01.023 0020-1693/© 2016 Elsevier B.V. All rights reserved. are many possible linkage isomers and tautomers [1-5], and it is often difficult to control the products by a self-assembling reaction. Lippert et al. reported an interesting synthesis of cytosinato(1-)bridged cyclic tetra- or hexanuclear Pt^{II}/Pd^{II} complexes which have the 1,3- or 1,3,5-alternate conformation [1,2]. In the cases of halfsandwich organometallic fragments (e.g., Cp*RhIII, Cp*IrIII and (arene)Rull) [15–18] with suitable bridging ligands (e.g., 2,3-dihydroxypyridine and its derivatives) [8–10,17–20], the resulting cyclic trinuclear complexes have a cone-type (i.e., metallacalix[3] arene) conformation due to a homochiral aggregation of three metal centers, and capture specific ionic pairs (e.g., LiF and Na₂SiF₆) in the cavity [16-19]. In contrast, similar cyclic tetranuclear complexes with half-sandwich fragments and suitable bridging ligands [15,16,21–31] formed mostly the 1,3-alternate conformers by heterochiral aggregations. So far, there is no explicit evidence for the formation of metallacalix[4] arene framework with tetranuclear Cp*Rh^{III} fragment to our best knowledge. $[\]ast$ Corresponding author at: Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan. 2 In this study we have attempted to prepare Cp*Rh^{III} complexes bearing thyminate(2-) as a bridging ligand (Scheme 1). It was found that Na⁺, Ca²⁺ and Ln³⁺ (Ln = La, Eu, Dy or Er) cations can act as a template forming a cyclic tetranuclear $[(Cp*Rh)_4(\mu-thym)_4M]^{n+}$ cluster, which has a metallacalix[4]arene framework. Also, it turned out that the bridging mode of thym²⁻ is dependent on the kinds of cation and anion. In particular, in the case that Ca (ClO₄)₂ was used as a template salt two kinds of tetranuclear clusters with the μ_3 -1 κN^1 :2 $\kappa^2 N^3$,0²:3 κO^2 and μ_3 -1 κN^1 :2 $\kappa^2 N^3$,0²:3 κO^2 bridging modes (Scheme 1) are piled up alternatively in the crystals. A preliminary result of this study has been reported previously [32]. #### 2. Experimental #### 2.1. Materials Thymine (H₂thym), 1,2,3,4,5-pentamethylcyclopentadiene (HCp*) and other chemicals and solvents were commercially available, and they were used as received. The starting hydroxido complex, [(Cp*Rh)₂(μ -OH)₃]OH was prepared by the literature method [33]. #### 2.2. Preparation of complexes #### 2.2.1. $[\{Cp^*Rh(Hthym)\}_2(\mu-OH)_2]\cdot 6H_2O$ A suspension of H₂thym (13 mg, 0.10 mmol) in methanol (10 mL) was added to a methanol solution (10 mL) of [(Cp*Rh)₂ (μ -OH)₃]OH (28 mg, 0.051 mmol), and the mixture was stirred for 3 h at ambient temperature. The resulting solution was evaporated to dryness under reduced pressure, and the residue was dissolved in water. The filtered solution was allowed to stand at room temperature to concentrate slowly, affording orange crystals of [{Cp*Rh(Hthym)}₂(μ -OH)₂]-6H₂O. Yield: 27 mg (62%). ¹H NMR (CD₃OD, 400 MHz, 21 °C): δ 1.32 (s, 15H, Cp*), 2.01 (s, 3H, thym CH₃), 7.41 (s, 1H, thym C⁶-H), 8.17 (s, 1H, thym N³-H). Anal. Calc. for C₃0H₅4N₄O₁₂Rh₂: C, 41.48; H, 6.27; N, 6.45. Found: C, 41.47; H, 6.10; N, 6.39%. #### 2.2.2. $[\{Cp^*Rh(\mu\text{-}thym)\}_4(NaPF_6)]$ (**1P**) To a mixture of H_2 thym (13 mg, 0.10 mmol) and [(Cp*Rh)₂ (μ -OH)₃]OH (27 mg, 0.050 mmol) in methanol (20 mL) was added a methanol solution (10 mL) of NaPF₆ (4.2 mg, 0.025 mmol), and the mixture was stirred for 2 h at ambient temperature. The resulting solution was evaporated to dryness under reduced pressure, and the residue was extracted with dichloromethane (20 mL). The filtered extract was evaporated, again, to dryness under reduced pressure. The crude product was recrystallized from a methanol solution by vapor diffusion of diethyl ether, affording orange crystals of **1P**·Et₂O·MeOH suitable for X-ray analysis. Yield (after drying in vacuo): 7.8 mg (21%). ¹H NMR (CD₃OD, 300 MHz, 22 °C): δ 1.79 (s, 15H, Cp*), 1.81 (s, 3H, thym CH₃), 7.28 (s, 1H, thym **Scheme 1.** (a) Thymine (H_2 thym) with the atom-numbering scheme used in this paper, and (b) and (c) two bridging modes of thym²⁻ found in the tetranuclear Cp*Rh complexes incorporating a metal cation (M^{n+}). C⁶–*H*). ESI-MS (MeOH): m/z 1471.12 ([{Cp*Rh(μ -thym)}₄Na]*). *Anal.* Calc. for C₆₀H₇₆F₆N₈NaO₈PRh₄ = **1P**: C, 44.57; H, 4.74; N, 6.93. Found (after drying in vacuo): C, 44.91; H, 5.12; N, 6.64%. #### 2.2.3. $[\{Cp^*Rh(\mu-thym)\}_4(NaBF_4)]\cdot 2MeOH\cdot 2H_2O\ (\textbf{1B}\cdot 2MeOH\cdot 2H_2O)$ This compound was prepared by a similar method to that for **1P**, using NaBF $_4$ instead of NaPF $_6$. Yield: 33%. 1 H NMR (CD $_3$ OD, 300 MHz, 22 $^\circ$ C): δ 1.79 (s, 15H, Cp*), 1.81 (s, 3H, thym CH $_3$), 7.27 (s, 1H, thym C 6 –H). ESI-MS (MeOH): m/z 1471.18 ([{Cp*Rh(μ -thym)} $_4$ -Na]*). Anal. Calc. for C $_6$ 2H $_8$ 8BF $_4$ N $_8$ NaO $_1$ 2Rh $_4$ = **1B**-2MeOH·2H $_2$ O: C, 44.89; H, 5.35; N, 6.76. Found: C, 44.60; H, 5.16; N, 6.60%. The crystals of **1B**-Et $_2$ O-MeOH·H $_2$ O suitable for X-ray analysis were obtained from a methanol solution by vapor diffusion of diethyl ether. #### 2.2.4. $[\{Cp^*Rh(\mu-thym)\}_4(NaNO_3)]\cdot H_2O(1N\cdot H_2O)$ This compound was prepared by a similar method to that for **1P**, using NaNO₃ instead of NaPF₆. The crude product obtained by extraction with dichloromethane, followed by evaporation of the solvent, was recrystallized from an acetonitrile solution by layering of di(isopropyl) ether, and the resulting orange crystals were collected by filtration and dried in air. Yield: 35%. ¹H NMR (CD₃CN, 400 MHz, 21 °C): δ 1.79 (s, 15H, Cp*), 1.81 (s, 3H, thym CH₃), 7.28 (s, 1H, thym C⁶–H). ¹³C{¹H} NMR (CD₃CN, 100.6 MHz, 22 °C): δ 9.9 (s, Cp* CH₃), 13.4 (s, thym CH₃), 95.3 (d, J = 9.1 Hz, Cp*CMe), 115.4 (s, thym), 116.8 (s, thym), 152.9 (s, thym), 173.4 (s, thym). *Anal.* Calc. for C₆₀H₇₈N₉NaO₁₂Rh₄ = **1N**·H₂O: C, 46.44; H, 5.07; N, 8.12. Found: C, 46.21; H, 5.01; N, 8.30%. The crystals of **1N**·3MeCN·H₂O suitable for X-ray analysis were obtained from a mixture of acetonitrile and di(isopropyl) ether. # 2.2.5. [$\{Cp^*Rh(\mu-thym)\}_4\{(CaNO_3)(MeCN)\}\}(NO_3)_{0.5}(OH)_{0.5}\cdot 9H_2O$ (**2N**·9H₂O) A suspension of H₂thym (26 mg, 0.20 mmol) in methanol (10 mL) was added to a methanol solution (10 mL) of [(Cp*Rh)₂ $(\mu$ -OH)₃]OH (54 mg, 0.10 mmol), and the mixture was stirred for 3 h at ambient temperature. A methanol solution (10 mL) of Ca (NO₃)₂·4H₂O (12 mg, 0.050 mmol) was added and the mixture was further stirred for 2 h. The resulting solution was evaporated to dryness under reduced pressure, and the residue was extracted with dichloromethane (20 mL). The filtered extract was evaporated, again, to dryness under reduced pressure. The crude product was recrystallized from an acetonitrile solution by vapor diffusion of di(isopropyl) ether, affording orange crystals of 2N·9H₂O suitable for X-ray analysis. Yield: 26.5 mg (30%). ¹H NMR (CD₃CN, 400 MHz, 21 °C): δ 1.57 (s, 3H, thym CH₃), 1.70 (s, 15H, Cp*), 7.09 (s,1H, thym C^6 –H). ESI-MS (MeCN): m/z 1551.00 ([{Cp*Rh(μ -thym)}₄ $(CaNO_3)]^+)$, 744.50 ([{Cp*Rh(μ -thym)}₄Ca]²⁺). Anal. Calc. for $C_{62}H_{93.5}N_{10.5}O_{20}CaRh_4 = 2N.7H_2O: C, 42.37; H, 5.36; N, 8.37.$ Found (partially efflorescent sample): C, 42.15; H, 4.45; N, 8.21%. ## 2.2.6. [$\{Cp^*Rh(\mu-thym)\}_4\{(CaClO_4)(CH_3OH)_{0.5}(H_2O)_{0.5}\}\]ClO_4\cdot H_2O$ This compound was prepared by a similar method to that for **2N**, using $Ca(ClO_4)_2$ instead of $Ca(NO_3)_2 \cdot 4H_2O$. The crude product obtained by extraction with dichloromethane, followed by evaporation of the solvent, was recrystallized from a methanol solution by vapor diffusion of di(isopropyl) ether. Yield: 31%. ¹H NMR (CD₃CN, 600 MHz, 21 °C): δ 1.57 (s, 3H, thym CH_3), 1.71 (s, 15H, Cp*), 7.09 (s,1H, thym C^6-H). ¹H NMR (CD₃OD, 600 MHz, 21 °C): δ 1.68 (s, 3H, thym CH_3), 1.78 (s, 15H, Cp*), 7.25 (s,1H, thym C^6-H). ESI-MS (MeOH): m/z 1587.11 ([{Cp*Rh(μ -thym)}₄(CaClO₄)]⁺), 744.09 ([{Cp*Rh(μ -thym)}₄Ca]²⁺). *Anal.* Calc. for $C_{121}H_{162}N_{16}O_{36}Ca_2Cl_4Rh_8$: C, 41.98; H, 4.72; N, 6.47. Found: C, 42.14; H, 4.51; N, 6.35%. Single-crystals used for X-ray analysis were obtained similarly to the above, but the analysis indicated that they contained partially deprotonated methoxido or hydroxide complex with its ### Download English Version: # https://daneshyari.com/en/article/5151875 Download Persian Version: https://daneshyari.com/article/5151875 <u>Daneshyari.com</u>