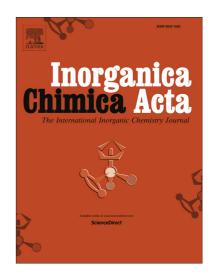
Accepted Manuscript

Research paper

Complex Formation Reactions of Gallium(III) and Iron(III/II) with L-Proline-Thiosemicarbazone Hybrids: a Comparative Study

Felix Bacher, Orsolya Dömötör, Éva A. Enyedy, Lana Filipović, Siniša Radulović, Gregory S. Smith, Vladimir B. Arion


PII: S0020-1693(16)30357-7

DOI: http://dx.doi.org/10.1016/j.ica.2016.06.044

Reference: ICA 17135

To appear in: Inorganica Chimica Acta

Received Date: 12 February 2016 Revised Date: 28 June 2016 Accepted Date: 29 June 2016

Please cite this article as: F. Bacher, O. Dömötör, E.A. Enyedy, L. Filipović, S. Radulović, G.S. Smith, V.B. Arion, Complex Formation Reactions of Gallium(III) and Iron(III/II) with L-Proline-Thiosemicarbazone Hybrids: a Comparative Study, *Inorganica Chimica Acta* (2016), doi: http://dx.doi.org/10.1016/j.ica.2016.06.044

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Complex Formation Reactions of Gallium(III) and Iron(III/II) with L-Proline-Thiosemicarbazone Hybrids: a Comparative Study

Felix Bacher^a, Orsolya Dömötör^{b,c}, Éva A. Enyedy^{b⊠}, Lana Filipović^d, Siniša Radulović^d, Gregory S. Smith^e, Vladimir B. Arion^{a⊠}

^aInstitute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria; ^bDepartment of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; ^c MTA-SZTE Bioinorganic Chemistry Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; ^dInstitute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; ^eDepartment of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa

⊠ <u>vladimir.arion@univie.ac.at</u>, Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria, tel: +43 1 4277 52615, fax: +43 1 4277 52630

Abstract

Three novel gallium(III) and iron(III) complexes with L-proline-thiosemicarbazone hybrids, namely [GaCl(L-Pro-FTSC-2H)]·0.7H₂O·0.5CH₃OH (1·0.7H₂O·0.5CH₃OH), [GaCl(dm-L-Pro-FTSC-2H)]·0.4H₂O (2·0.4H₂O) and [FeCl(L-Pro-FTDA-H)]Cl (3) were synthesised and comprehensively characterised by spectroscopic methods (¹H, ¹³C NMR, UV-vis), ESI mass spectrometry and X-ray crystallography. The complexes are soluble in biological media to allow for assaying their antiproliferative activity. The complexes were tested in three human cancer cell lines, namely HeLa, A549 (non-small cell lung cancer), LS174 and nontumorigenic MRC5. Complex formation equilibrium processes of L-Pro-FTSC with gallium(III), iron(II) and iron(II) ions were investigated in solution. The formation of mono-ligand iron(II) and gallium(III) complexes with pentadentate ligands and relatively low aqueous solution stability was found. Between iron(III) and the ligands, a redox reaction takes place via the oxidative cyclisation of the thiosemicarbazones.

Keywords: Thiosemicarbazones, Gallium(III), Iron(III), Antiproliferative activity

Download English Version:

https://daneshyari.com/en/article/5151938

Download Persian Version:

https://daneshyari.com/article/5151938

<u>Daneshyari.com</u>