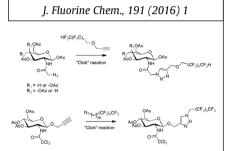


Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor



Graphical Abstracts/J. Fluorine Chem. 191 (2016) iv-viii

Glucosamine- and galactosamine- based monosaccharides with highly fluorinated motifs

Joanna Tomaszewska, Karolina Kowalska, Katarzyna Koroniak-Szejn Faculty of Chemistry, Adam Mickiewicz University, ul. Umultowska 89b, 60-614 Poznań, Poland

• Efficient synthetic route towards monosaccharides with highly fluorinated long chain motifs, as a potential building blocks. • The method is cost-effective, easy to be implemented, selective and easily scalable. • The syntheses are based on the use of commercially available and reasonable in price starting materials and reagents.

Synthesis and catalytic activity of ruthenium complexes modified with chiral racemic per- and polyfluorooxaalkanoates

Pavlína Lipovská^a, Lucie Rathouská^a, Ondřej Šimůnek^a, Jan Hošek^a, Viola Kolaříková^a, Markéta Rybáčková^a, Josef Cvačka^b, Martin Svoboda^b, Jaroslav Kvíčala^a

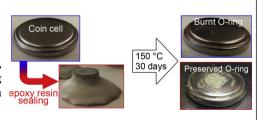
^aDepartment of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic

^bInstitute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

• Racemic silver per- or polyfluorpolyoxaalkanoates gave with Hoveyda-Grubbs precatalyst

Rep = C₀F₁O-CHF-, R = C₀F₁O₂H₄, 2b, 88%

light fluorous ruthenium complexes. • Increased steric hindrance in fluoro(oxa)alkanoates-modified ruthenium complexes decreased the catalytic activity in RCM. • Prepared complexes with less steric hindrance were active in RCM forming tetrasubstituted double bond.


J. Fluorine Chem., 191 (2016) 14 R_{FO}COOAg rt, CH₂Cl₂ rt, CH₂Cl₂ rt, CH₂Cl₃ rt, CH₃Cl₃ rt, CH₂Cl₃ rt, CH₃Cl₃ rt, CH₃Cl₃ rt, CH₃Cl₃ rt, CH

Modified coin cells to evaluate the electrochemical properties of solid-state fluoride-ion batteries at 150 °C

Antonin Grenier, Ana Gabriela Porras Gutierrez, Henri Groult, Damien Dambournet Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8234, PHENIX, F-75005 Paris, France

• A modified coin cell setup, adapted to the study of solid-state fluoride-ion batteries, is proposed. • The sealing of the coin cell is verified by electrochemical tests using composites made of Bi and BiF₃. • The deposition of a high-temperature epoxy resin allows the coin cell to remain hermetical after 30 days at 150 °C.

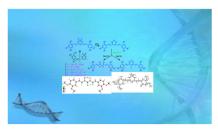
J. Fluorine Chem., 191 (2016) 23

17

Fluoro-curcuminoids and curcuminoid-BF₂ adducts: Synthesis, X-ray structures, bioassay, and computational/docking study

Kenneth K. Laali^a, Benjamin M. Rathman^a, Scott D. Bunge^b, Xin Qi^c, Gabriela L. Borosky^d

^aDepartment of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA


^bDepartment of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA

^cDepartment of Medicinal Chemistry, College of Pharmacy, University of Florida, P.O. Box 100484, Gainesville, FL 32610. USA

^dINFIQC, CONICET and Departamento de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina

• Synthesis of α -fluorinated curcuminoids by direct mono- and difluorination. • Synthesis of ring fluorinated curcuminoids. • Isolation and characterization of curcuminoid-BF₂ adducts. • X-ray structure analysis. • Bioassay and computational docking study.

J. Fluorine Chem., 191 (2016) 29

I. Fluorine Chem., 191 (2016) 44

ortho-Fluorobenzanilides and ortho-fluorothiobenzanilides: Molecular conformations and crystal packing

Teresa Olszewska^a, Jarosław Chojnacki^b, Barbara Wicher^c, Maria I. Milewska^a

^aDepartment of Organic Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland

^bDepartment of Inorganic Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland

Department of Chemical Technology of Drugs, Poznań University of Medical Sciences, 60-780 Poznań, Poland

• Role of *ortho* fluorine substituent in the crystal structures of *o*-fluorobenzanilides. • Synthesis of two new 2,6-difluoro(*N*-phenyl) thiobenzanilides was performed. • Weak $C_{Ar} - F \cdots H - C_{Ar}$ or $C_{Ar} - F \cdots F - C_{Ar}$ interactions are observed in the molecular self-assembly in the crystals lattices.

Palladium-catalyzed direct mono- α -arylation of α -fluoroketones with aryl halides or phenyl triflate

Jun Zhou^a, Xiang Fang^a, Tongle Shao^a, Xueyan Yang^a, Fanhong Wu^{a,b}

^aKey Laboratory for Advanced Material and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China ^bSchool of Chemical and Environmental Engineering, Shanghai Institute of Technology, 120 Caobao Road, Shanghai 200235, China

- Palladium catalyzed Nigishi-type α -arylation of α -fluoroketones with a broad range of aryl halides or phenyl triflate. Pd(OAc)₂ as catalyst, Xphos as ligand and Cs₂CO₃ as mild base play the important role. The desired monoarylated α -fluoroketones were obtained in good yields.
- A practical synthetic strategy to potentially bioactive fluorocarbonyl compounds.

J. Fluorine Chem., 191 (2016) 54

$$R^{1} \xrightarrow{F} + R^{2} \xrightarrow{K} \xrightarrow{Pd(OAc)_{2}, XPhos} \\ X = Cl, Br, I, OTf$$

$$X = Cl, Br, I, OTf$$

$$38 \text{ samples}$$

Synthesis of difluoromethylenephosphonated oxindoles through visible-vight-induced radical cyclization of *N*-arylacrylamides

Guojie Yina, Mei Zhub, Gangbin Yanga, Xuemeng Wanga, Weijun Fub

^aDepartment of Environment Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023. PR China

^bCollege of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, PR China

• Visible-light-induced difluoromethylenephosphonation of *N*-arylacrylamides. • Two new C–C bonds were formed *via* a sequential radical addition and cyclization process. • The reaction afforded difluoromethylenephosphonated oxindoles with good functional group tolerance.

J. Fluorine Chem., 191 (2016) 63

Download English Version:

https://daneshyari.com/en/article/5152224

Download Persian Version:

https://daneshyari.com/article/5152224

<u>Daneshyari.com</u>