

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Oxidation of C-H compounds with peroxides catalyzed by polynuclear transition metal complexes in Si- or Ge-sesquioxane frameworks: A review^{*}

Mikhail M. Levitsky ^a, Alexey N. Bilyachenko ^{a, b, *}, Georgiy B. Shul'pin ^{c, d, **}

^a Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Ulitsa Vavilova, Dom 28, 119991 Moscow, Russia

^b People's Friendship University of Russia, Ulitsa Miklukho-Maklaya, Dom 6, 117198 Moscow, Russia

^c Semenov Institute of Chemical Physics, Russian Academy of Sciences, Ulitsa Kosygina, Dom 4, 119991 Moscow, Russia

^d Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi Pereulok, Dom 36, 117997 Moscow, Russia

ARTICLE INFO

Article history: Received 20 January 2017 Received in revised form 25 April 2017 Accepted 4 May 2017 Available online 6 May 2017

This paper is dedicated with admiration to Professor Richard D. Adams in recognition of his notable contributions to the chemistry of polynuclear transition metal complexes and catalysis.

Keywords: Alkanes Alcohols Alkyl hydroperoxides Hydrogen peroxide meta-Chloroperoxybenzoic acid (MCPBA) Stereoselectivity

Contents

1.	Introduction	. 202
2.	Copper derivatives as catalysts	. 204
	2.1. A dicopper(II) complex	.204
	2.2. Tetracopper complexes	. 205
	2.3. A pentanuclear copper complex	. 207
	2.4. Hexacopper complexes with silicon- and germanium-containing frameworks	. 207
	2.5. A complex containing seven copper ions	. 209
	2.6. Nonacopper complexes	. 209
3.	Polynuclear iron complexes	. 209
4.	Polynuclear cobalt complexes	. 213
5.	A nickel complex as a catalyst	. 214
6.	Conclusions	. 214

* The work was partly presented at the 16th International Congress on Catalysis, Beijing, China, 2016, lecture OF24.

* Corresponding author. People's Friendship University of Russia, Ulitsa Miklukho-Maklaya, Dom 6, 117198 Moscow, Russia.

E-mail addresses: bilyachenko@ineos.ac.ru (A.N. Bilyachenko), Shulpin@chph.ras.ru (G.B. Shul'pin).

ABSTRACT

Polynuclear transition metal complexes in Si- or Ge-sesquioxane frameworks synthesized in recent years turned out to be efficient catalysts in oxidation of organic compounds with peroxides: H₂O₂, *tert*-butyl hydroperoxide (TBHP), *meta*-chloroperoxybenzoic acid (MCPBA). This brief review describes oxygenations by peroxides of alkanes to alkyl hydroperoxides, alcohols and ketones and benzene to phenol as well as oxidation of alcohols to the corresponding ketones. Some reactions with MCPBA occur stereoselectively.

© 2017 Elsevier B.V. All rights reserved.

^{**} Corresponding author. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Ulitsa Kosygina, Dom 4, 119991 Moscow, Russia.

http://dx.doi.org/10.1016/j.jorganchem.2017.05.007 0022-328X/© 2017 Elsevier B.V. All rights reserved.

Acknowledgements	
References	215

1. Introduction

Siloxanes, organosilicon compounds containing Si–O–Si fragments, are very important substances both from academic and practical points of view [1]. Silsesquioxanes with chemical formula $[RSiO_{1.5}]_n$ (R is H, alkyl, aryl or alkoxyl) contain 1.5 atoms O per one

Fig. 1. A simplified structure of complex $[(PhSi)_{10}O_{18}Cu_2Na_2]$ (1). Adapted from Ref. [17a] with permission of Wiley publishing company.

Fig. 2. Graph A: Accumulation of phenol during oxidation of benzene (0.45 M) with H_2O_2 (1.35 M; 35% aqueous) catalyzed by compound **1** at different concentrations of **1**: 1×10^{-4} M (curve 1), 2×10^{-4} M (2), 3×10^{-4} M (3). The reaction was carried out in acetonitrile in the presence of HNO₃ (0.05 M, 65% aqueous) at 70 °C. At $[\mathbf{1}]_0 = 1 \times 10^{-4}$ M (curve 1) after 14 h, TON was 530. Graph B: Dependence of initial reaction rate W_0 on initial concentration of **1** (for conditions of experiments presented in Graph A). Adapted from Ref. [17a] with permission from Wiley publishing company.

atom Si (Latin "Sesqui" means "one-and-one-half times").

Branched structural units of sesquioxane composition are known as a sophisticated instrument for bridging a gap between inorganic and organic chemistry. Mainly, such investigations were focused on silicon-containing (RSiO_{1.5}-based) sesquioxanes, capable to mimic natural silicates, modified due to the presence of an organic exterior [1]. Excellent ability of Si-sesquioxane frameworks to be a basement of metalladerivatives is also well-known and described in detail in several monographs, reviews and original papers [2]. Silsesquioxane fragments, acting as acyclic [2a], [2c], [2g] [3] cyclic [2g] [4] or condensed [2b] [2d], [2e] [2f], [2g] [5], ligands, provide enormous amount of metal-containing products. Cage-like metallasilsesquioxanes (CLMSs) RXO_{1.5} (R - organic group, X = Si, Ge) constitute a large class of polycyclic compounds based on RSi–O–M structural fragment (M is a metal atom) [2–7].

Fig. 3. The structures of the "Globule"-like compound $[(PhSi)_{12}O_{24}Cu_4Na_4]$ (**2**) and "Sandwich"-like (or "Belt"-like) derivative $[(PhSi)_6O_{12}Cu_4Na_4(PhSi)_6O_{12}]$ (**3**). Adapted from Ref. [17c] with permission from the Royal Society of Chemistry.

Download English Version:

https://daneshyari.com/en/article/5152816

Download Persian Version:

https://daneshyari.com/article/5152816

Daneshyari.com