# ARTICLE IN PRESS

Journal of Organometallic Chemistry xxx (2017) 1-7

Contents lists available at ScienceDirect



Journal of Organometallic Chemistry



journal homepage: www.elsevier.com/locate/jorganchem

# Diruthenium-DMBA compounds bearing extended cross-conjugated ligands

### Sean N. Natoli, Matthias Zeller, Tong Ren<sup>\*</sup>

Department of Chemistry, Purdue University, West Lafayette, IN 47906, United States

#### ARTICLE INFO

Article history: Received 25 January 2017 Received in revised form 5 March 2017 Accepted 6 March 2017 Available online xxx Dedicated to John Gladysz, a good friend and pioneer of metal-polyyne chemistry, on the occasion of his 65th birthday.

Keywords: Cross-conjugation Diruthenium Acetylide Structure Voltammetry

#### ABSTRACT

A series of bis(alkynyl) Ru<sub>2</sub>(*DMBA*)<sub>4</sub> (*DMBA* = *N*,*N'*-dimethylbenzamidinate) compounds bearing extended, acyclic, cross-conjugated frameworks (number of acetylene units  $\geq$  3), namely Ru<sub>2</sub>(*DM*-*BA*)<sub>4</sub>(**L1**Si<sup>1</sup>Pr<sub>3</sub>)<sub>2</sub> (**1a**, see Scheme 1 for the definition of **L1** and **L2**) and Ru<sub>2</sub>(*DMBA*)<sub>4</sub>(**L2**Si<sup>1</sup>Pr<sub>3</sub>)<sub>2</sub> (**2a**), were prepared under aerobic, weak base conditions in good yields. Compounds **1a** and **2a** showed moderate stability and underwent protiodesilylation aided with the addition of (n-Bu)<sub>4</sub>NF to the free ethynyl compounds Ru<sub>2</sub>(*DMBA*)<sub>4</sub>(**L1**H)<sub>2</sub> (**1b**) and Ru<sub>2</sub>(*DMBA*)<sub>4</sub>(**L2**H)<sub>2</sub> (**2b**), respectively. An X-ray structural study of **1a** revealed a significant deviation from the idealized D<sub>4h</sub> geometry in the coordination sphere of the Ru<sub>2</sub> core, accompanied by one of the shortest Ru-C<sub>α</sub> bonds reported thus far. Electronic absorption spectral measurements imply that compounds **1a** and **1b** possess a smaller HOMO-LUMO gap (*ca*. 1.38 eV), while the gap of **2a** and **2b** (*ca*. 1.40 eV) is closer to the range of typical Ru<sub>2</sub>(*DMBA*)<sub>4</sub>(C<sub>2</sub>R)<sub>2</sub>-type compounds (*ca*. 1.42 eV). Cyclic voltammetry measurements indicate a subtle interplay between structural and electronic properties, dependent only on the placement of the intervening olefin across the conjugation pathway.

© 2017 Elsevier B.V. All rights reserved.

#### 1. Introduction

The rich electrochemical and optical properties of organometallic compounds possessing conjugated carbon rich backbones have fascinated synthetic and material chemists for decades [1,2], leading to the investigations of these compounds as prospective molecular wires [3–7], active species within memory devices [8,9], and nonlinear optical (NLO) chromophores [10–12]. Progress in the field has focused primarily on linearly conjugated  $\sigma$ -polyenyl (-C=C-) [13–15], and  $\sigma$ -polyvnyl (-C=C-) bridges [16,17], due to their proficiency at facilitating charge transfer. While the majority of reported work focuses on short polyyn-diyl frameworks (number of acetylene units  $\leq$  2) [18–22], there has always been a strong desire in both pushing the synthetic limit of such conjugated backbones (number of acetylene units  $\geq$  3) and uncovering unique topologies [23]. Recently, extended carbon frameworks have been realized for compounds based on Re [24-26], Ru [27-30], Fe [31,32] and Co [33]. Especially noteworthy are the efforts from the laboratory of Gladysz that resulted in both the longest metal-

\* Corresponding author. E-mail address: tren@purdue.edu (T. Ren).

E mail address, trene purdae.edd (1. heil).

http://dx.doi.org/10.1016/j.jorganchem.2017.03.013 0022-328X/© 2017 Elsevier B.V. All rights reserved. capped polyyn-diyl ( $C_{28}$ ) [34,35] and diplatinum polyynes surrounded by  $sp^3$  carbon double helices [36–38].

Though far less developed compared to linear conjugated carbon rich compounds, compounds containing nonlinear (branched) carbon-rich linkers are interesting targets for achieving large dynamic range in attenuating charge transfer [39] and as scaffolds from which to build intricate topologies [40,41]. Recent synthetic advances from the laboratories of Diederich [42] and Tykwinski [43–45] have made it possible to explore acyclic cross-conjugated enevne and enediyne scaffolds as building blocks, such as  $\sigma$ geminal-diethynylethene (gem-DEE, Scheme 1), for metal-alkynyl chemistry [46]. It is important to note that cross-conjugation is defined as the conjugation between two unsaturated  $\pi$ -segments that, although not conjugated to each other, are conjugated to an intervening unsaturated segment [47]. While such systems are intriguing, there are only a handful of organometallic compounds bearing cross-conjugated ligands, likely due to the limited lifetime of ligand precursor and their instability toward lithio-alkynyl techniques [44,45,48]. Early examples of metal compounds bearing cross-conjugation were reported by Tykwinski and coworkers, where a Pt(PPh<sub>3</sub>)<sub>2</sub> fragment was coordinated by two  $\sigma$ gem-DEE in the trans-positions [49]. More recently, a ferrocenyl capped 3-(dibromomethylidene)penta-1,4-diyne complex was

## **ARTICLE IN PRESS**

S.N. Natoli et al. / Journal of Organometallic Chemistry xxx (2017) 1-7



Scheme 1. Acyclic cross-conjugated ligands.

reported, for which the degree of Fc-Fc interaction was assessed by voltammetry methods [50]. The laboratories of Bruce [51] and Ren [52] have also reported synthetic strategies in reaching bridged cross-conjugated ruthenium compounds. Earth abundant transitions metal complexes of Co(III) [53,54], Cr(III) [55], and Fe(III) [56] of the type *trans*-[M(cyclam)(*gem*-DEE)<sub>2</sub>]<sup>+</sup> have also been prepared and interrogated.

Our laboratory has previously explored the role of *gem*-DEE as a ligand bound to a versatile  $Ru_2(DMBA)_4$  (DMBA = N,N'-dimethylbenzamidinate) unit which served as a spectroscopic and/or electrochemical handle for assessing the conjugate nature of ligands [57]. The synthetic advantage of  $Ru_2(DMBA)_4$ —based compounds lies in the aerobic preparation of bis-alkynyl  $Ru_2(DMBA)_4(C_2R)_2$ -type species under weak base conditions [29,58]. Encouraged by previous results, we sought to expand upon the current understanding of acyclic cross-conjugated framework beyond that of *gem*-DEE. Described herein are the preparation and characterization of a series of diruthenium compounds with extended cross conjugated frameworks containing three acetylenic units, where the placement of the intervening olefin varies (Scheme 1).

#### 2. Results and discussion

#### 2.1. Synthesis

The limited stability of H-capped *gem*-DEE is well documented in the literature [45,48,52,54], and the H-capped extended *gem*-DEEs such as 2-methyl-3-ethynyl-hepta-2-ene-4,6-diyne (**L1**H) and 3,6-diethynyl-2,7-dimethyl-2,6-octadiene-4-yne (**L2**H) (Scheme 1) are even more prone to degradation than *gem*-DEE [44]. In an effort to reduce degradation, the trimethylsilyl end-capped crossconjugated ligand precursors Me<sub>3</sub>SiL1Si<sup>1</sup>Pr<sub>3</sub> and Me<sub>3</sub>SiL2Si<sup>1</sup>Pr<sub>3</sub> were synthesized according to literature procedures [44,45]. These ligand precursors were found to be stable for several days under refrigeration. Protio-desilylation to the ethynyl ligands L1Si<sup>1</sup>Pr<sub>3</sub> or L2Si<sup>1</sup>Pr<sub>3</sub> was performed just prior to metalation using a methanolic Cs<sub>2</sub>CO<sub>3</sub> solution.

As shown in Scheme 2, the use of Ru<sub>2</sub>(*DMBA*)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub> allows for the facile synthesis of a variety of extended *gem*-DEE compounds under weak-base conditions. The reaction between Ru<sub>2</sub>(*DM*-*BA*)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub> and L1Si<sup>1</sup>Pr<sub>3</sub> in the presences of Et<sub>2</sub>NH yielded a winered solution characteristic of *trans*-Ru<sub>2</sub>(*DMBA*)<sub>4</sub>(C<sub>2</sub>R)<sub>2</sub>-type compounds [59,60]. Thin layer chromatography (TLC) [R<sub>f</sub> = 0.77, 1:3 (v/ v) EtOAc/hexanes] analysis revealed that the reaction was complete within 3 h. Subsequent purification using a silica gel pad followed by recrystallization yielded a red crystalline material as the sole product (isolated yield 73%). The red product was unambiguously identified as *trans*-Ru<sub>2</sub>(*DMBA*)<sub>4</sub>(L1Si<sup>1</sup>Pr<sub>3</sub>)<sub>2</sub> (**1a**) by ESI-MS, <sup>1</sup>H NMR, elemental analysis and a single crystal X-ray diffraction study. Unlike the metal free ligands L1H, L1Si<sup>1</sup>Pr<sub>3</sub>, or the silyl capped precursor Me<sub>3</sub>SiL1Si<sup>1</sup>Pr<sub>3</sub>, compound **1a** appears to be indefinitely stable as a solid under ambient conditions.

In a manner similar to **1a**, compound **2a** was prepared from the reaction of  $\text{Ru}_2(DMBA)_4(\text{NO}_3)_2$  and freshly desilylated **L2**Si<sup>1</sup>Pr<sub>3</sub>. Contrary to the quick formation of **1a**, **2a** was significantly slower, with a gradual change in solution color from green to red observed over a 24 h period (via TLC analysis). The resulting red solution was purified by silica gel chromatography followed by recrystallization to yield a sticky, dark-red material identified as *trans*-Ru<sub>2</sub>(*DM*-*BA*)<sub>4</sub>(**L2**Si<sup>1</sup>Pr<sub>3</sub>)<sub>2</sub> (**2a**). The reaction of **2a** occurred with a puzzling low yield (46%) considering the effective metalation for both **1a** and Ru<sub>2</sub>(*DMBA*)<sub>4</sub>(*gem*-DEE-Si<sup>1</sup>Pr<sub>3</sub>)<sub>2</sub> (77%) [57], which is likely attributed to slow degradation of desilylated **L2**Si<sup>1</sup>Pr<sub>3</sub>.

The desilylation derivatives of 1a and 2a, Ru<sub>2</sub>(DMBA)<sub>4</sub>(L1H)<sub>2</sub>



<sup>a</sup>Conditions: (i) L1-Si<sup>i</sup>Pr<sub>3</sub> or L2-Si<sup>i</sup>Pr<sub>3</sub>, Et<sub>2</sub>NH, THF, rt; (ii) cat. (n-Bu)<sub>4</sub>NF, THF, 0°C 2h.

Scheme 2. Synthesis of compounds 1a-b and 2a-b<sup>a</sup>.

Please cite this article in press as: S.N. Natoli, et al., Journal of Organometallic Chemistry (2017), http://dx.doi.org/10.1016/j.jorganchem.2017.03.013

Download English Version:

# https://daneshyari.com/en/article/5152929

Download Persian Version:

https://daneshyari.com/article/5152929

Daneshyari.com