Accepted Manuscript

SCS indenediide pincer complexes: Zr to Pd and Pt transmetallation

Julien Monot, Nathalie Merceron-Saffon, Blanca Martin-Vaca, Didier Bourissou

PII: S0022-328X(16)30480-6

DOI: 10.1016/j.jorganchem.2016.10.031

Reference: JOM 19675

To appear in: Journal of Organometallic Chemistry

Received Date: 31 August 2016
Revised Date: 15 October 2016
Accepted Date: 18 October 2016

Please cite this article as: J. Monot, N. Merceron-Saffon, B. Martin-Vaca, D. Bourissou, SCS indenediide pincer complexes: Zr to Pd and Pt transmetallation, *Journal of Organometallic Chemistry* (2016), doi: 10.1016/j.jorganchem.2016.10.031.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

SCS Indenediide Pincer Complexes: Zr to Pd and Pt Transmetallation

Julien Monot, a,b,* Nathalie Merceron-Saffon, Blanca Martin-Vaca, and Didier Bourissou blanca Martin-Vaca, and Didier Bourissou blanca Martin-Vaca, and Didier Bourissou blanca Martin-Vaca, blanca Martin-Vac

Abstract

A new synthetic methodology based on transmetallation was developed for the preparation of SCS indenediide pincer complexes. Upon reaction of the 1,3-bis(thiophosphinoyle)indene 1 with [Zr(NMe₂)₄], C_{sp3}-H activation proceeds readily to give the new complex **2**. Thermolysis at 100°C for 5 hours then affords the SCS pincer complex 3. Complex 2 can be stored under inert atmosphere for several weeks without decomposition. It is much more stable than 3 and was thus used as precursor to study transmetallation. Zr to Pd / Pt Transmetallation occurs rapidly and cleanly at room temperature. Accordingly, the pincer complexes 4, 5, 7 and 8 with triphenylphosphine or chloride as co-ligand were obtained in good to excellent yields under mild conditions.

Keywords: Transmetallation, pincer complexes, zirconium, palladium, platinum

1. Introduction

Since the first report of Moulton and Shaw in 1976, pincer complexes have emerged as a very useful class of complexes.² The central M-C bond is strengthened by the coordination of the two lateral donor groups and pincer complexes display a unique stability / reactivity balance. Besides their interest in material science³ and pharmacology,⁴ pincer complexes are extremely powerful catalysts for a myriad of important transformations.⁵ In particular, spectacular achievements have been reported over the last decade taking advantage of metal-ligand cooperativity.⁶

In this respect, we recently described a new family of pincer complexes based on the indene skeleton bearing two donor groups (thiophosphinoyle R₂P=S or phosphazene R₂P=NR') in the 1 and 3 positions. Thanks to these two coordinating groups, the very rare in-plane σ coordination is favored with early (Zr) as well as late (Pd,Pt) transition metals. The non-innocent behavior of the indenediide ligand was illustrated by stoichiometric reactions with organic and metallic electrophiles. 8 In addition, thanks to metalligand cooperativity, the Pd and Pt SCS indenediide complexes showed unprecedented catalytic performance in the cycloisomerization of alkynoic acids and N-tosylalkynylamides.⁹

All these indenediide complexes have been prepared by sequential double C-H activation of the corresponding proligands (Chart 1).¹⁰ Although straightforward and quite efficient, this route usually requires long reaction times and/or heating, and the desired complexes are obtained in good but not excellent yields (~ 60-70%). We thus wondered about alternative strategies that may operate under milder

^a Université de Toulouse, UPS, 118 route de Narbonne, F-31062 Toulouse, France

^b CNRS, LHFA UMR5069, F-31062 Toulouse, France

^c Université de Toulouse, UPS, Institut de Chimie de Toulouse, FR2599, 118 Route de Narbonne, F-31062 Toulouse, France

^{*} Corresponding authors. Tel.: +33 56155 7737 (J.M.), +33 56155 6803 (D.B.); fax: +33 56155 8204. E-mail addresses: monot@chimie.ups-tlse.fr (J.M.), dbouriss@chimie.ups-tlse.fr (D.B.)

Download English Version:

https://daneshyari.com/en/article/5153192

Download Persian Version:

https://daneshyari.com/article/5153192

Daneshyari.com