Contents lists available at ScienceDirect #### Journal of Organometallic Chemistry journal homepage: www.elsevier.com/locate/jorganchem #### Review ## Organophosphines in organoplatinum complexes: Structural aspects of $PtPC_2X$ (X = H, O, N, B, Cl, S or I) derivatives Milan Melník ^{a, b, *}, Peter Mikuš ^{a, b} #### ARTICLE INFO # Article history: Received 27 September 2016 Received in revised form 28 October 2016 Accepted 4 November 2016 Available online 5 November 2016 Keywords: Structure Organoplatinum Organophosphines Trans-influence Isomers #### ABSTRACT © 2016 Elsevier B.V. All rights reserved. #### Contents | 1. | Introduction | . 30 | |----|---|------| | 2. | PtPC ₂ X derivatives | . 31 | | | 2.1. PtPC ₂ X (X = H or O) derivatives | . 31 | | | 2.2. PtPC ₂ N derivatives | . 31 | | | 2.3. $PtPC_2X$ (X = B or Cl) derivatives | . 34 | | | 2.4. PtPC ₂ X (X = S or I) derivatives | .34 | | 3. | Conclusions | . 35 | | | Acknowledgements | | | | Abbreviations | | | | References | | | | | | #### 1. Introduction Systematic studies in the field of stereoselectivity of coordination as well as organometallic compounds over the last 50 years have become of increasing interest. Stereoselectivity in E-mail address: qmelnik@stuba.sk (M. Melník). coordination compounds is very often related to important stereospecificity of biological systems, catalysis and stereochemical effects of technical processes. Recently we classified and analyzed structural parameters of stereoisomers of organoplatinum complexes [1]. In the chemistry of organoplatinum complexes organophosphines as soft-donor ligands are very often used. There are numerous published structural studies of such complexes. Structural parameters of mononuclear organoplatinum complexes with an inner coordination spheres: *cis*- PtP₂C2 [2], PtP₂CX (X = H, F or O) [3], PtP₂CX (X = N or B) [4], *cis*- PtP₂CCI [5], *trans*- PtP₂CCI [6], ^a Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak Republic b Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak Republic ^{*} Corresponding author. Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak Republic. PtP₂CX (X = S, Se, Si or Te) [7] and PtP₂CX (X = Br or I) [8] we analyzed and discussed. The aim of this review is classify and analyze structural parameters of monomeric organoplatinum complexes with an inner coordination sphere of PtPC₂X (X = H, O, N, B, Cl, S or I). The structural parameters of PtPC₂X compared and summarized with those found in the precursors [2–8]. The primary source of information was Cambridge Crystallographic Database up to the end of 2015. #### 2. PtPC₂X derivatives There are over seventy monomeric organoplatinum complexes with an inner coordination sphere of PtPC₂X for which structural parameters are available. These complexes crystallized in four crystal systems: tetragonal (\times 2), orthorhombic (\times 3), triclinic (\times 27) and monoclinic (\times 41). #### 2.1. $PtPC_2X$ (X = H or O) derivatives Colorless triclinic [Pt(PPh₃)(CH₂CN)(C₁₁H₁₄N₂O)(H)] [9] is only example in which monodentate donor ligands create *cis*- PtPC₂H inner coordination sphere. The Pt-L bond distances elongate in the order: 1.64(4) Å (H, trans to O) < 2.069(4) Å (C, trans to P) < 2.110(7) Å (C, trans to H) < 2.252(2) Å (P, trans to C). The *cis*- L-Pt-L bond angles open in the order: $85(1)^{\circ}$ (C-Pt-H) < $88(1)^{\circ}$ (H-Pt-P) < $90.0(2)^{\circ}$ (C-Pt-C) < $96.7(1)^{\circ}$ (C-Pt-P). The *trans*- L-Pt-L bond angles are $172.7(1)^{\circ}$ (C-Pt-P) and $174.(1)^{\circ}$ (C-Pt-H). **Fig. 1.** Structure of $[Pt(PPh_3)(\eta^1-C_9H_9N_2O_7)(\eta^2-C_9H_9N_2O_7)]$ [11]. #### 2.2. PtPC₂N derivatives There are over forty complexes with PtPC₂N inner coordination sphere, which on the bases of combination of coordination mode of the respective donor ligands can be divided into the eight subgroups: Pt(η^1 -PL)(η^1 -CL)₂(η^1 -NL); Pt(η^1 -PL)(η^1 -CL)(η^2 -C,NL); Pt(η^2 -P,NL)(η^1 -CL)₂; Pt(η^2 -P,CL)(η^1 -NL); Pt(η^3 -P,C,CL)(η^1 -NL); Pt(η^1 -PL)(η^3 -C,N,CL); Pt(η^3 -P,C,NL)(η^1 -CL), and Pt(η^2 -P,NL)(η^2 -C,CL). In two complexes with cis-configuration: tetragonal [Pt(PPh₃)(Me)₂(η^1 -pop)] [12] and triclinic [Pt(PPh₃)(Me)(η^1 -C₁₀H₁₂N₆)(η^1 -py)](py)₂ [13], only monodentate donor ligands are involved. The mean Pt-L bond distances elongate in the order: 2.02 Å (C, trans to N) < 2.08 Å (C, trans to P) < 2.124 Å (N, trans to C) < 2.304 Å (P, trans to C). The \emph{cis} - L-Pt-L bond angles (mean values) open in the order: 86.4° (C-Pt-C)(C-Pt-N) < 90.7° (C-Pt-P) < 96.5° (N-Pt-P). The mean values of \emph{trans} - L-Pt-L bond angles are 171.7° (C-Pt-N) and 176.7° (C-Pt-P). There are nineteen examples of $Pt(\eta^1-PL)(\eta^1-CL)(\eta^2-C,NL)$ type, sixteen with cis- PtPC2N configuration and remaining three with trans-configuration. The complexes with cis-configuration are: $[Pt(PPh_3)(Me)(\eta^2-C_{14}H_{10}F_2N)]$ [14], $[Pt(PPh_3)(Me)(\eta^2-C_{14}H_9F_3N)]$ monoclinic [14] and triclinic [15], $[Pt(PPh_3)(Me)(\eta^2-C_{14}H_{11}CIN)]$ $[Pt(PPh_3)(Me)(\eta^2-C_{15}H_{14}N)]$ [17], [Pt(Ph₂PC₆H₄OMeo)(Me)(η^2 -C₁₀H₁₁N₆)] [18], [Pt(PPh₃)(Me)(η^2 -C₂₀H₁₆N-2)] [19], $[Pt(PPh_3)(Me)(\eta^2-C_{20}H_{16}N-4)]$ $[Pt(PPh_3)(Me)(\eta^2 -$ [19]. $C_{14}H_{10}BrClN)$ [20]. $[Pt(PPh_3)(Me)(\eta^2-C_{18}H_{13}CIN)]$ $[Pt(PPh_3)(Me)(\eta^2-C_{18}H_{13}CIN)]$ [21], $[Pt(PPh_3)(Me)(\eta^2-C_{17}H_{14}NS)]$ [22], $[Pt(PPh_3)(Me)(\eta^2-C_{17}H_{15}CINO_2)]$ [23], $[Pt(PPh_3)(Me)(\eta^2-C_{17}H_{15}CINO_2)]$ $C_{12}H_{10}NS)$ [24], [Pt(PPh₃)(Me)(C_6F_5)(η^2 - $C_{13}H_8N$)] [25], and $[Pt(PPh_3)(Me)(\eta^2-C_{15}H_9BrF_4N)]$ [26]. Structure of *cis*-[Pt(PPh₃)(Me)(η^2 -C₁₄H₁₀BrClN)] [20] is shown in Fig. 2 as an example. The chelating ligands in the Pt(η^1 -PL)(η^1 -CL)(η^2 -C,NL) type complexes in Refs. [14–25,27,28] create five-membered metallocyclic rings with the mean C–Pt–N bite angles **Fig. 2.** Structure of *cis*-[Pt(PPh₃)(Me)(η^2 -C₁₄H₁₀BrClN)] [20]. #### Download English Version: ### https://daneshyari.com/en/article/5153224 Download Persian Version: https://daneshyari.com/article/5153224 <u>Daneshyari.com</u>