

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Two anionically derivatized scandium oxoselenates(IV): ScF[SeO₃] and Sc₂O₂[SeO₃]

Stefan Greiner, Sheng-Chun Chou, Thomas Schleid*

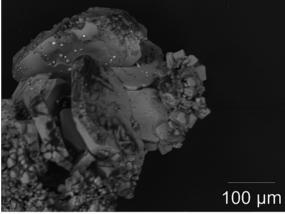
Institute for Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

ARTICLE INFO

Keywords: Scandium Oxoselenates(IV) Fluorides Crystal structure Stereochemical lone-pair activity, Raman spectroscopy

ABSTRACT

Scandium fluoride oxoselenate(IV) ScF[SeO₃] and scandium oxide oxoselenate(IV) Sc₂O₂[SeO₃] could be synthesized through solid-state reactions. ScF[SeO₃] was obtained phase-pure, by reacting mixtures of Sc₂O₃, ScF₃ and SeO₂ (molar ratio: 1:1:3) together with CsBr as fluxing agent in corundum crucibles embedded into evacuated glassy silica ampoules after firing at 700 °C for seven days. Sc₂O₂[SeO₃] first emerged as by-product during the attempts to synthesize ScCl[SeO₃] following aforementioned synthesis route and could later be reproduced from appropriate Sc₂O₃/SeO₃ mixtures. ScF[SeO₃] crystallizes monoclinically in space group $P2_1/m$ with a=406.43(2), b =661.09(4), c=632.35(4) pm, β =93.298(3)° and Z=2. Sc₂O₂[SeO₃] also crystallizes in the monoclinic system, but in space group $P2_1/m$ with a=786.02(6), b=527.98(4), c=1086.11(8) pm, β =108.672(3)° for Z=4. The crystal structures of both compounds are strongly influenced by the stereochemically active lone pairs of the ψ ¹-tetrahedral [SeO₃]²⁻ anions. They also show partial structures, where the derivatizing F⁻ or O²⁻ anions play an important role. For ScF[SeO₃] chains of the composition $\frac{1}{c^3}$ [FSc_{2/2}]²⁺} form from connected [FSc₂]⁵⁺ dumbbells, while [OSc₃]⁷⁺ pyramids and [OSc₄]¹⁰⁺ tetrahedra units are condensed to layers according to $\frac{1}{c^3}$ [O₂Sc₂]²⁺} in Sc₂O₂[SeO₃].


1. Introduction

Recently much research has focused on the synthesis of rare-earth metal(III) oxoselenates(IV) and their halide derivatives, since the asymmetric coordination polyhedron adopted by a selenium(IV) cation and the electron lone pairs residing at [SeO₃]²⁻ units may result in non-centrosymmetric structures with promising non-linear optical properties (NLO) [1-4]. In the last few years, crystal structures of many ternary rare-earth metal(III) oxoselenates(IV) have been reported, for example compounds with the composition $M_2Se_3O_9$ (= $M_2[SeO_3]_3$) exhibit five different crystal structures (La₂Se₃O₉ [5,6], Pr₂Se₃O₉ [7], Sm₂Se₃O₉ [8], Er₂Se₃O₉ [9], and Sc₂Se₃O₉ [10]) depending on the size of the M^{3+} cations involved. In addition, phases with the chemical formula M₂Se₂O₇ (M=Sm-Tm) [11] were structurally characterized and shown to contain extra oxide anions (O²⁻), which are not bonded to selenium according to $M_2O[SeO_3]_2$ with $Tb_2O[SeO_3]_2$ -type crystal structure [12]. The existence of phases with the composition $M_2 \text{SeO}_5 \ (\equiv M_2 \text{O}_2 [\text{SeO}_3])$ in the systems $M_2 \text{O}_3 / \text{SeO}_2$ was first pointed out by Pedro et al. through thermal decomposition of the oxoselenates(IV) M_2 Se₃O₉ (M=La-Lu) [13]. Later on Oppermann et al. successfully synthesized M2SeO5 phases (M=Y, Nd, Sm) by solid-state reactions from equimolar amounts of M2O3 and SeO2

[14-18]. Both methods unfortunately did not lead to single crystals so that only powder diffraction data of M_2SeO_5 representatives are available so far. In the quaternary systems $M^{3+}/O^{2-}/F^{-}/Se^{4+}$, four different structure types for the formula MF[SeO₃] (M=Y, La, Ce, Ho-Lu) [6,19-24] and two similar structure types for the formula M_3 F[SeO₃]₄ (M=Pr-Ho) [24-26] were found previously. However, in the field of scandium(III)-oxoselenate(IV) derivatives only few compounds are known so far. Now we were able to synthesize single crystals of ScF[SeO₃] and Sc₂O₂[SeO₃] and determined their structures via X-ray single-crystal structure determination and refinement. Furthermore, we conducted a single-crystal Raman scattering study of both compounds with the aim to provide suitable reference data for future Raman investigations of oxoselenates(IV). In this work we embedded corundum-liner crucibles into fused silica ampoule during the synthesis of rare-earth metal(III) fluoride oxoselenates(IV). This method not only avoids the formation of silicates as by-products and achieves phase-pure ScF[SeO₃], judged on the basis of powder X-ray diffraction, in the end, but also offers a new preparative model set-up for the synthesis of other similar compounds, such as rare-earth metal(III) fluoride oxotellurates, oxoarsenates, and oxomolybdates.

E-mail address: schleid@iac.uni-stuttgart.de (T. Schleid).

^{*} Corresponding author.

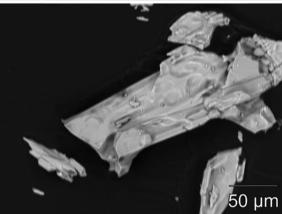


Fig. 1. Electron microscopic SEM images of single crystals of $ScF[SeO_3]$ (top) and $Sc_2O_2[SeO_3]$ (bottom).

2. Experimental section

Colourless, air- and water resistant platelet-shaped single crystals of $ScF[SeO_3]$ (Fig. 1, top) were obtained by solid-state reactions of Sc_2O_3 (ChemPur, 99.9%), ScF_3 (ChemPur, 99.9%) and SeO_2 (Acros, 99.8%) in a molar ratio of 1:1:3 with an excess of CsBr (ChemPur, 99.9%) as flux according to:

$$Sc_2O_3 + ScF_3 + 3 SeO_2 \rightarrow 3 ScF[SeO_3].$$
 (1)

The educt mixtures were initially filled under argon atmosphere into corundum crucibles, which were embedded into silica ampoules, and subsequently evacuated to 10^{-3} mbar, torch-sealed and heated in a muffle furnace to 700 °C for 7 days. Afterwards the furnace was cooled down in 99 h to 450 °C and from this point in 4 h to 25 °C. The crude product was washed with distilled water in order to fully remove CsBr flux. The yields of ScF[SeO₃] obtained are almost 100% according to X-ray powder diffractometric analyses (XRPD), since no other solid phase could be identified (Fig. 2). The second compound Sc₂O₂[SeO₃] (Fig. 1, bottom) was first found as a by-product during the attempts to synthesize ScCl[SeO₃] [27] following the above heating temperatures and steps. It could later be reproduced by firing appropriate Sc₂O₃/SeO₂ admixtures according to:

$$Sc_2O_3 + SeO_2 \rightarrow Sc_2O_2[SeO_3].$$
 (2)

However, it was not possible to synthesize $Sc_2O_2[SeO_3]$ as phase-pure samples, as always traces of $Sc_2[SeO_3]_3$ [10] were detected with the XRPD technique. Suitable single crystals of both compounds were selected for the X-ray structure analysis. The diffraction intensities of the single crystals were collected at room temperature on a κ -CCD X-ray diffractometer (Bruker-Nonius, Germany) with a device using graphite-monochromatized Mo-K α radiation (λ =71.07 pm). A numer-

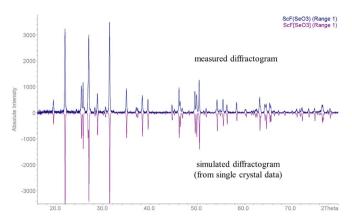


Fig. 2. X-ray powder-diffraction measurement (XRPD) of $ScF[SeO_3]$ (top) in comparison to the simulated diffractogram from single-crystal data (bottom) presenting a phase-pure product.

Table 1Crystallographic data of ScF[SeO₃] and Sc₂O₂[SeO₃].

Compound	ScF[SeO ₃]	$Sc_2O_2[SeO_3]$
Crystal system	monoclinic	monoclinic
Space group	$P2_1/m$ (no. 11)	$P2_1/n$ (no. 14)
Lattice parameters		
(a in pm)	406.43(2)	786.02(6)
(b in pm)	661.09(4)	527.98(4)
(c in pm)	632.35(4)	1086.11(8)
$(\beta \text{ in deg})$	93.298(3)	108.672(3)
Number of formula units (Z)	2	4
Calculated density (Dx in g/cm3)	3.738	3.871
Molar volume (V _m in cm ³ /mol)	51.07(3)	64.28(6)
Diffractometer	κ-CCD (Bruker-	к-CCD (Bruker-
	Nonius)	Nonius)
Wavelength	Μο-Κα	Μο-Κα
_	$(\lambda = 71.07 \text{ pm})$	$(\lambda = 71.07 \text{ pm})$
Diffractometer limit ($2\theta_{\text{max}}$ in deg)	56.17	56.19
Index range ($\pm h_{\text{max}}$, $\pm k_{\text{max}}$, $\pm l_{\text{max}}$)	5 / 7 / 8	10 / 6 / 14
Number of e ⁻ per unit cell F(000)	176	464
Absorption coefficient (μ in mm ⁻¹)	12.76	11.61
Number of collected/unique reflections	3461/451	7817/1042
Data set residuals, R_{int}/R_{ct}	0.067/0.037	0.092/0.051
Structure residuals, R_1/wR_2	0.024/0.049	0.028/0.051
Extinction coefficient (q)	0.0210(3)	0.0038(5)
Goodness of fit, GooF	1.077	1.104
Residual electron density (ρ in $10^{-6}~\text{pm}^{-3}$, max./min.)	0.63/-0.58	0.93/-0.67

ical absorption correction was performed with the program HABITUS [28]. Structure solutions and refinements were carried out by using the program package SHELX-97 [29]. Table 1 presents the crystallographic data for ScF[SeO_3] and Sc_2O_2[SeO_3]. Atomic positions and coefficients of the equivalent isotropic displacement parameters are given in Table 2 for ScF[SeO_3] and in Table 4 for Sc_2O_2[SeO_3], whereas the interatomic distances and bond angles of ScF[SeO_3] and Sc_2O_2[SeO_3] are shown in Tables 3 and 5, respectively. More details on the crystal structure investigations of ScF[SeO_3] (CSD-430693) and Sc_2O_2[SeO_3] (CSD-430691) can be obtained from the Fachinformationszentrum

Table 2 Fractional atomic coordinates and isotropic equivalent displacement parameters for ScF [SeO $_3$].

Atom	Site	x/a	y/b	z/c	$U_{ m eq}^{~a}/{ m pm}^2$
Sc F Se O1	2e 2e 2e 2e	0.46588(16) 0.9686(5) 0.68073(9) 0.4153(6)	1/4 1/4 1/4 1/4 1/4	0.37542(11) 0.3721(4) 0.85074(6) 0.0394(4)	76(2) 190(6) 114(2) 157(6)
O2	4f	0.5327(5)	0.0695(3)	0.6760(3)	174(5)

^a $U_{\text{eq}} = \frac{1}{3} [U_{22} + \frac{1}{\sin^2 \beta} (U_{11} + U_{33} + 2U_{13} \cos \beta)].$

Download English Version:

https://daneshyari.com/en/article/5153728

Download Persian Version:

https://daneshyari.com/article/5153728

<u>Daneshyari.com</u>