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a b s t r a c t

Let X = (x1, . . ., xN) and Y = (y1, . . ., yN) be two decreasing vectors with positive coordinates
such that

PN
j¼1xj ¼

PN
j¼1yj (representing e.g. citation data of articles of two authors or jour-

nals with the same number of publications and the same number of citations (in total)). It
is remarked that if the Lorenz curve L(X) of X is above the Lorenz curve L(Y) of Y, then the g-
index g(X) of X is larger than or equal to the g-index g(Y) of Y. We indicate that this is a good
property for so-called impact measures which is not shared by other impact measures such
as the h-index. If L(X) = L(Y) and

PN
j¼1xj >

PN
j¼1yj we prove that g(X) P g(Y). We can even

show that g(X) > g(Y) in case of integer values xi and yi and we also investigate this property
for other impact measures.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

First we will re-introduce Lorenz concentration theory and then discuss some well-known impact measures.

1.1. Concentration theory: discrete Lorenz curve

Lorenz concentration theory was invented by Lorenz in 1905 (Lorenz (1905)) and is used to measure the concentration or
inequality between a set of positive numbers (e.g. the salaries of employees). Lorenz concentration theory has also found its
way into informetrics, e.g. to measure the inequality in citations of papers of an author or to measure the inequality in pro-
ductivity of authors (i.e. in the number of papers of these authors) – see basically Egghe (2005, chap. IV) and many references
therein. The application of Lorenz concentration theory in informetrics is no surprise since – as in econometrics – many (if
not all) source-item distributions are very skew: many sources have few items and few sources have many items – see Egghe
(2005, chap. I and IV), where these inequalities are described via the laws of Lotka and Zipf (but we will not use these laws in
this paper).

Let us, briefly, describe Lorenz concentration theory. Let X = (x1, . . ., xN) be a decreasing vector with positive coordinates xi,
i = 1, . . ., N. The Lorenz curve L(X) of X is the polygonal curve connecting (0, 0) with the points i

N ;
Pi

j¼1aj

� �
, i = 1, . . . , N, where

ai ¼
xiPN
j¼1xj

ð1Þ

Note that for i = N we have (1, 1) as end point of L(X). Let X and Y = (y1, . . ., yN) be two such vectors. We say that X is more
concentrated than Y if L(X) > L(Y). We also say that the coordinates of X are more unequal than the ones of Y.
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That Lorenz curves are the right tool to measure concentration or inequality is seen by the result of Muirhead (1903) stat-
ing1 that L(X) > L(Y) if and only if X is constructed, starting from Y, by a finite applications of elementary transfers. An ele-
mentary transfer (e.g. on Y = (y1, . . ., yN)) changes Y into the vector

ðy1; . . . ; yi þ h; . . . ; yj � h; . . . ; yNÞ ð2Þ

where 1 6 i < j 6 N and h > 0. Since Y is decreasing, this means, in econometric terms that ‘‘we take away (h > 0) from the
poor (j) and give it to the rich (i)” which indeed yields a more unequal (concentrated) situation, which is applied repeatedly
to yield X out of Y.

For further use, we also note the following. If L(X) = L(Y) we have that X = aY for a certain value a > 0, namely (use (1))

a ¼
PN

j¼1xjPN
j¼1yj

ð3Þ

Indeed, denote ai for X as in (1) and denote

bi ¼
yiPN
j¼1yj

ð4Þ

i = 1, . . ., N for Y. Since L(X) = L(Y) we have a1 = b1, a1 + a2 = b1 + b2, . . ., a1 + � � � + aN = b1+ � � � +bN (=1) so that ai = bi for all
i = 1, . . ., N from which X = aY with a as in (3) follows.

1.2. Impact measures

This theory will now be linked with a set of new impact measures, defined only since 2005 onwards. Impact measures are
defined on the same type of vectors X and Y as described above. Usually we now interpret the coordinates as the number of
citations to N papers of an author or a journal X or Y, but this is not really necessary. In the above interpretation, impact mea-
sures then measure the overall visibility, impact,. . . of a journal or of an author’s career. Let us briefly re-introduce the impact
measures that we will use in this paper.

It all started with the introduction of the Hirsch index (or h-index): Hirsch (2005). Let the vector X = (x1, . . ., xN) be as
above: a decreasing sequence of N positive numbers. Then X has h-index h if r = h is the largest rank such that each paper
on rank 1, . . ., h has h or more citations. As mentioned in many papers, h is a unique index that combines quantity (number
of papers) with quality (or rather visibility) (number of citations to these papers) and it is a robust measure in the sense that
it is not influenced by a set of lowly cited papers nor by the exact number of citations to the first h papers in the ranking in X
(the so-called h-core) (see Braun, Glänzel, and Schubert (2006), Egghe (2006)). However, the latter property is considered as
a disadvantage of the h-index: once a paper is in the h-core, it does not matter how many citations (above h) it received or
will receive: this does not influence the value of h. We agree with a measure that does not take into account some (or several)
lowly cited papers as long as it takes into account the number of citations to the highly cited papers. Therefore, Egghe intro-
duced in 2006, see Egghe (2006), an improvement of the h-index: the g-index.

Note that the papers in the h-core, together, have at least h2 citations. Now the g-index is the largest rank r = g such that
all papers on rank 1, . . ., g, together, have at least g2 citations. Obviously g P h but that is not an important issue here. It has
been recognized that the g-index has more discriminatory power than the h-index (Schreiber, 2008a, 2008b; Tol, 2008).

The R-index, introduced in Jin, Liang, Rousseau, and Egghe (2007), serves the same goal as the g-index on the improve-
ment of the h-index although it uses the h-index in its definition:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiXh

i¼1

xi

vuut ð5Þ

where X = (x1, . . ., xN) is as above and h is the h-index of X. Note again, as in the case of the g-index, that the actual xi-values
(the highest ones) are effectively used.Kosmulski’s h(2)-index is similar to the h-index but now one requires r = h(2) to be the
largest rank such that each paper on rank 1, . . ., h(2) has (h(2))2 or more citations – see Kosmulski (2006). It was introduced to
save time in calculating impact measures: h(2) is much smaller than h since one requires (at least) the square of the rank as
the number of citations (see below for the impact measure values of this author).

Since g P h it might be interesting to apply Kosmulski’s idea also to the g-index. Note that the first h(2) papers, together,
have, at least (h(2))3 citations. We now define g(2) as the highest rank such that the first g(2) articles, together, have, at least
(g(2))3 citations. The g(2) impact measure is new and is introduced here for the first time.

Table 1 gives the citation data of this author, based on the Web of Science on July 24, 2008. We only present the first 23
papers since we do not need higher ranks. As needed for the calculation of the g-index, we also present the cumulative scores
and the squares of the ranks.

1 Muirhead’s theorem was published in 1903, two years before Lorenz introduced the Lorenz curve (Lorenz (1905)). Muirhead’s theorem hence did not use
the Lorenz terminology but a combinatorial variant of it. Here we present the Lorenz variant of Muirhead’s theorem. Muirhead’s theorem can also be found in
Hardy, Littlewood, and Pólya (1952) and in Egghe and Rousseau (1991).
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