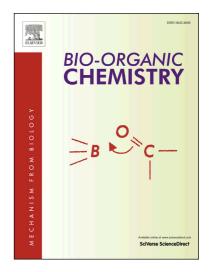
Accepted Manuscript

Synthesis, *in vitro* evaluation and molecular docking studies of novel amide linked triazolyl glycoconjugates as new inhibitors of α -glucosidase

Shyam Ji Gupta, Samrat Dutta, Rahul Gajbhiye, Parasuraman Jaisankar, Asish Kumar Sen


PII: S0045-2068(16)30222-X

DOI: http://dx.doi.org/10.1016/j.bioorg.2017.03.006

Reference: YBIOO 2033

To appear in: Bioorganic Chemistry

Received Date: 23 August 2016 Revised Date: 8 February 2017 Accepted Date: 17 March 2017

Please cite this article as: S.J. Gupta, S. Dutta, R. Gajbhiye, P. Jaisankar, A.K. Sen, Synthesis, *in vitro* evaluation and molecular docking studies of novel amide linked triazolyl glycoconjugates as new inhibitors of α -glucosidase, *Bioorganic Chemistry* (2017), doi: http://dx.doi.org/10.1016/j.bioorg.2017.03.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis, *in vitro* evaluation and molecular docking studies of novel amide linked triazolyl glycoconjugates as new inhibitors of α -glucosidase

Shyam Ji Gupta, Samrat Dutta, Rahul Gajbhiye, Parasuraman Jaisankar, Asish Kumar Sen* Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.

*Address for correspondence: Dr. A. K. Sen, Tel:+91 (33) 24995806; Fax: +91 (33) 24735197; E-mail: aksen@iicb.res.in

Abstract

A series of *N*-substituted amide linked triazolyl β-D-glucopyranoside derivatives (**4a-1**) were synthesized and their *in vitro* inhibitory activity against yeast α-glucosidase enzyme [EC.3.2.1.20] was assessed. Compounds **4e** (IC₅₀=156.06 μM), **4f** (IC₅₀=147.94 μM), **4k** (IC₅₀=127.71 μM) and **4l** (IC₅₀=121.33 μM) were identified as the most potent inhibitors for α-glucosidase as compared to acarbose (IC₅₀=130.98 μM) under the same *in vitro* experimental conditions. Kinetic study showed that both **4e** and **4f** inhibit the enzyme in a competitive manner with *p*-nitrophenyl α-D-glucopyranoside as substrate. Molecular docking studies of **4e**, **4f**, **4k** and **4l** were also carried out using homology model of α-glucosidase to find out the binding modes responsible for the inhibitory activity. This study revealed that the binding affinity of compounds **4e**, **4f**, **4k** and **4l** for α-glucosidase were -8.2, -8.6, -8.3 and -8.5 kcal/mol respectively, compared to that of acarbose (-8.9 kcal/mol). The results suggest that the *N*-substituted amide linked triazole glycoconjugates can reasonably mimic the substrates for the yeast α-glucosidase.

Keywords: amide linked glucopyranoside; diabetes; docking studies; α -glucosidase; glycoconjugate; triazole.

1. Introduction

Diabetes mellitus is a group of metabolic disorders where a person has high blood sugar levels. Changes in lifestyle and dietary habits have increased the occurrence of diabetes mellitus [1]. According to the World Health Organization, at least 2.8% of the world population suffered from type-II diabetes mellitus in 2000 and it is estimated that by 2030 this will almost double [2]. The elevated glucose levels in the patients results from the disorder in

Download English Version:

https://daneshyari.com/en/article/5155179

Download Persian Version:

https://daneshyari.com/article/5155179

<u>Daneshyari.com</u>