Accepted Manuscript

Chitosan cross-linked with poly(ethylene glycol)dialdehyde via reductive amination as effective controlled release carriers for oral protein drug delivery

Zi-Wei Jing, Zhi-Wei Ma, Chen Li, Yi-Yang Jia, Min Luo, Xi-Xi Ma, Si-Yuan Zhou, Bang-Le Zhang

PII:	S0960-894X(16)31351-8
DOI:	http://dx.doi.org/10.1016/j.bmcl.2016.12.072
Reference:	BMCL 24561
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date:	12 October 2016
Revised Date:	6 December 2016
Accepted Date:	28 December 2016

Please cite this article as: Jing, Z-W., Ma, Z-W., Li, C., Jia, Y-Y., Luo, M., Ma, X-X., Zhou, S-Y., Zhang, B-L., Chitosan cross-linked with poly(ethylene glycol)dialdehyde via reductive amination as effective controlled release carriers for oral protein drug delivery, *Bioorganic & Medicinal Chemistry Letters* (2016), doi: http://dx.doi.org/10.1016/j.bmcl.2016.12.072

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Chitosan cross-linked with poly(ethylene glycol)dialdehyde via reductive amination as effective controlled release carriers for oral protein drug delivery

Zi-Wei Jing ^a, Zhi-Wei Ma ^b, Chen Li ^a, Yi-Yang Jia ^a, Min Luo ^a, Xi-Xi Ma ^a, Si-Yuan Zhou, Bang-Le Zhang ^a, *

^a Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, P. R. China

^b Qindu Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China

ABSTRACT

The covalently cross-linked chitosan-poly(ethylene glycol)₁₅₄₀ derivatives have been developed as a controlled release system with potential for the delivery of protein drug. The swelling characteristics of the hydrogels based on these derivatives as the function of different PEG content and the release profiles of a model protein (bovine serum albumin, BSA) from the hydrogels were evaluated in simulated gastric fluid with or without enzyme in order to simulate the gastrointestinal tract conditions. The derivatives cross-linked with difunctional PEG₁₅₄₀-dialdehyde via reductive amination can swell in alkaline pH and remain insoluble in acidic medium. The cumulative release amount of BSA was relatively low in the initial 2 h and increased significantly at pH 7.4 with intestinal lysozyme for additional 12 h. The results proved that the release-and-hold behavior of the cross-linked CS–PEG₁₅₄₀H-CS hydrogel provided a swell and intestinal enzyme controlled release carrier system, which is suitable for oral protein drug delivery.

Keywords: chitosan; poly(ethylene glycol); crosslinking; hydrogel; controlled delivery system

*Corresponding author. Tel./fax: +86 29 84776813. E-mail address: blezhang@fmmu.edu.cn (B.-L Zhang).

Download English Version:

https://daneshyari.com/en/article/5155512

Download Persian Version:

https://daneshyari.com/article/5155512

Daneshyari.com