

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Phenylindenone isomers as divergent modulators of p38 α MAP kinase

Andrea Cappelli ^{a,*}, Chiara Nannicini ^a, Alessia Chelini ^a, Marco Paolino ^a, Germano Giuliani ^a, Maurizio Anzini ^a, Antonio Giordani ^b, Chiara Sabatini ^b, Gianfranco Caselli ^b, Laura Mennuni ^b, Francesco Makovec ^b, Gianluca Giorgi ^a, Salvatore Vomero ^a, Maria Cristina Menziani ^c

ARTICLE INFO

Article history: Received 12 August 2016 Revised 29 September 2016 Accepted 2 October 2016 Available online 4 October 2016

Keywords: MAPK Kinases Synthesis Docking

ABSTRACT

Two new fluorophenylindenone derivatives were designed as potential p38 α MAPK modulators by preserving the key interactions of the vicinal pyridine/fluorophenyl pharmacophore with the enzyme protein. Interestingly, these two fluorophenylindenone isomers showed divergent activities, with compound $\bf 6$ behaving as an inhibitor and $\bf 5$ as a putative activator. These results were rationalized by docking studies and molecular dynamics simulations in terms of stabilization of DFG loop, by compound $\bf 5$ in a conformation more accessible to phosphorylation.

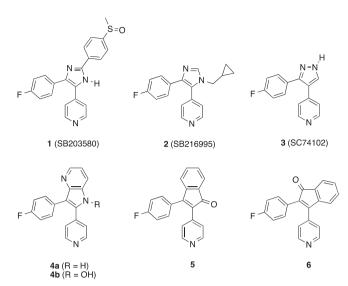
© 2016 Elsevier Ltd. All rights reserved.

Mitogen-activated protein kinases (MAPK) are protein kinases that can be classified in several distinct groups composed of sets of three evolutionarily conserved, sequentially acting kinases: MAPK, MAPK kinase (MKK), and MKK kinase (MAP3K). The activation of MAP3K leads to phosphorylation and activation of an MKK, which in turn stimulates MAPK activity through dual phosphorylation on threonine and tyrosine residues located in the activation loop. Once activated, MAPK phosphorylate cytoplasmic and nuclear target substrates on serine or threonine residues.

p38 proteins are a class of MAPK playing a crucial role in important cellular processes (i.e. cell differentiation, apoptosis, and autophagy) and are responsive to stress stimuli such as heat and osmotic shock, ultraviolet irradiation, and inflammatory cytokines. The p38 MAPK family includes four different isoforms, namely p38 α , p38 β , p38 γ , p38 δ . Among them, p38 α has been reported to be largely expressed in monocytes and macrophages, whereas p38 β is abundant in endothelial cells, p38 γ in skeletal muscle, and p38 δ in testes, pancreas, prostate, small intestine and in certain endocrine tissues. Substrates of p38 MAPKs include a large number of different proteins and a significant portion of them is involved in the regulation of gene expression. P38 has been

considered an interesting target for the development of anti-inflammatory drugs. $^{7-10}$ Thus, over the past two decades, the development of small molecule $p38\alpha$ MAPK inhibitors has received an extraordinary level of attention both in the pharmaceutical industry and in the academia. Thus, the medicinal chemistry work has produced a large number of inhibitors (see Fig. 1 for some representative structures), and some of them have been co-crystallized with the enzyme in order to evaluate the drug-protein interactions in the complexes. 11

The most explored chemical class of p38 α MAPK inhibitors is characterized by the presence of a nitrogen-containing six member heterocyclic moiety (pyridine, pyrimidine, or equivalents) in a vicinal position to a lipophilic (most often a p-fluorophenyl) group. The development of this family of compounds has been stimulated by the interesting results obtained with compound 1 (SB203580) and its congeners by SmithKline Beecham. The exploration of the chemical space around this structure has produced inhibitors showing potency in the nanomolar range and the discovery of 4-azaindole derivatives 4a.b.


In order to evaluate the effects of further core modifications on the interaction with $p38\alpha$, fluorophenylindenone derivatives **5** and **6** (Fig. 1) were designed by replacing the imidazole heterocyclic core of **1** with the indenone scaffold. The central pharmacophore consisting in the vicinal pyridine/fluorophenyl system was

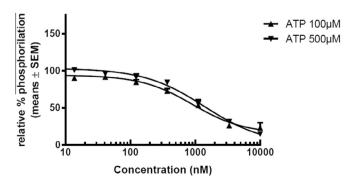
^a Dipartimento di Biotecnologie, Chimica e Farmacia and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy

^b Rottapharm Biotech S.r.l., Via Valosa di Sopra 3, 20900 Monza, Italy

^c Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy

^{*} Corresponding author. Tel.: +39 0577 234320. E-mail address: andrea.cappelli@unisi.it (A. Cappelli).

Figure 1. Comparison of the structures of the newly designed isomeric indenone derivatives **5** and **6** with those of some selected $p38\alpha$ MAP kinase inhibitors.

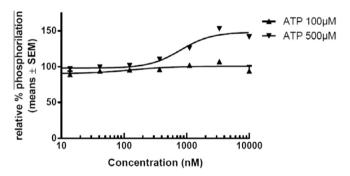

conserved so that the pyridine nitrogen could behave as the hydrogen bond acceptor for the NH of Met-109 and the 4-fluorophenyl moiety could occupy the hydrophobic back pocket. On the other hand, the indenone moiety of **5** and **6** could find different accommodations in the phosphate/sugar region of the binding site.

Compounds **5** and **6** were synthesized as described in the Supporting information, characterized by crystallography [CCDC 1487925 (**5**), 1487926 (**6**), see Supporting information], and tested for their potential modulatory activity on p38 α MAPK enzyme at Life Technologies Ltd¹⁴ [SelectScreen Kinase Profiling, Protein Serine/Threonine Kinase MAPK14 (p38 α) direct Z-LITE kinase assays platform, for the experimental details see http://www.lifetechnologies.com/selectscreen] by using two different ATP concentrations, namely 500 μ M (close to the K_m value) and 100 μ M.

In the enzymatic studies, indenone derivative **6** showed significant inhibitory properties, with a potency in the micromolar range that appeared to be dependent by the concentration of ATP used in the enzymatic assay (Fig. 2).

In particular, with the ATP concentration close to the $K_{\rm m}$ value the concentration–effect curve for compound ${\bf 6}$ is slightly shifted to right compared with that observed with a lower ATP concentration. Accordingly the IC $_{50}$ value in the presence of 500 μ M ATP was slightly but significantly higher (1.35 μ M vs 0.899 μ M, for 500 and 100 μ M ATP, respectively).

On the other hand, isomeric indenone **5** failed in showing an inhibitory activity at both the ATP concentrations tested. Surpris-


Figure 2. MAPK14 (p38 α) phosphorylation in the presence of compound **6** and different ATP concentrations, 100 μ M or 500 μ M (close to the K_m value). Data are expressed as mean ± SEM.

ingly on the contrary, at the ATP concentration corresponding to the $K_{\rm m}$ value, compound **5** appeared to increase MAPK14 phosphorylation, thus behaving as a partial activator (activation effect around 40–50% at 10 μ M, Fig. 3).

In order to verify this surprising result, compound **5** was resampled and re-assayed in the same test system and the results confirmed those obtained in the preliminary assay. In fact, the top three concentrations induced a significant increase of phosphorylation. This phenomenon could be caused by compound-dependent activation of the kinase, or by undetected assay interference of some sort. In order to rule out fluorescence interferences and development reaction interferences, control wells were used and compound **5** did not show any evidence of interference. On the other hand, the activation effect appeared to be almost negligible at $100~\mu M$ ATP, suggesting the importance of the ATP concentration in revealing the activation features of indenone derivative **5**.

Thus, the preliminary results of the enzymatic studies performed with compound $\bf 5$ was surprising because this indenone isomer of the p38 α MAPK inhibitor $\bf 6$ appeared to behave as activator.

Owing to these intriguing results, docking studies and molecular dynamics simulations were performed in order to rationalize the apparently divergent behavior obtained with the isomeric indenone derivatives. Docking of compounds $\bf 5$ and $\bf 6$ to p38 α MAPK was performed on the basis of the structural similarity of these compounds with the 4-azaindole inhibitor $\bf 4b$ (type I inhibitor), 11 the crystal structure of which, in complex with p38 α MAPK, has been resolved (PDB code :10Z1, Fig. 4). 13

Figure 3. MAPK14 (p38 α) phosphorylation in the presence of compound **5** and different ATP concentrations, 100 μ M or 500 μ M (close to the $K_{\rm m}$ value). Data are expressed as mean ± SEM.

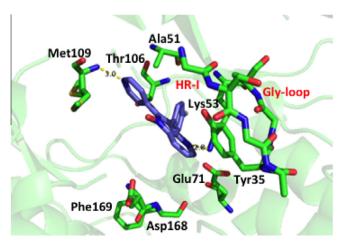


Figure 4. 4-Azaindole inhibitor 4b bound to p38α MAPK (PDB code: 10Z1).¹³

Download English Version:

https://daneshyari.com/en/article/5155539

Download Persian Version:

https://daneshyari.com/article/5155539

<u>Daneshyari.com</u>