ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

An oligodeoxyribonucleotide containing 5-formyl-2'-deoxycytidine (fC) at the CpG site forms a covalent complex with DNA cytosine-5 methyltransferases (DNMTs)

Kousuke Sato^a, Kyoji Kawamoto^a, Shintaro Shimamura^b, Satoshi Ichikawa^a, Akira Matsuda^{a,*}

ARTICLE INFO

Article history:
Received 14 September 2016
Revised 11 October 2016
Accepted 13 October 2016
Available online 14 October 2016

Keywords: Epigenetic Nucleic acids 5-Formyl-2'-deoxycytidine Covalent bond DNA methyltransferase

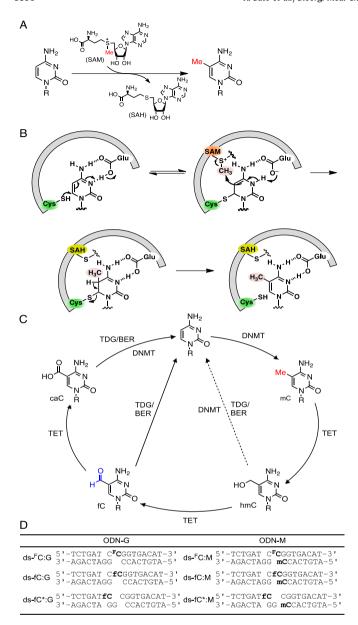
ABSTRACT

5-Methylcytosine (mC) is known to induce epigenetic changes. Ten-eleven translocation (TET) enzymes produce the further oxidized 5-substituted cytosine derivatives, 5-formylcytosine (fC) and 5-carboxylcytosine (caC). However, their roles are unclear thus far. Here, we synthesized oligodeoxyribonucleotides (ODNs) containing 5-formyl-2'-deoxycytidine and examined their interactions with DNA cytosine-5 methyltransferase (DNMT). We found that the ODN sequence containing fCpG formed a covalent complex with both bacterial and mouse recombinant DNMTs in the absence of any cofactors. The covalent bonding with DNMT suggests that the fCpG sequence in DNA may play a role in epigenetic regulation.

© 2016 Elsevier Ltd. All rights reserved.

Methylation at the C5 position of cytosine in a CpG dinucleotide is catalyzed by DNA cytosine-5 methyltransferase (DNMT) to give 5-methylCpG (mCpG), using S-adenosyl-L-methionine (SAM) as the methyl group donor (Fig. 1A). This modification has a profound effect on gene expression, particularly in gene promoter regions.^{1,2} One characteristic of tumor cells is their unusual DNA methylation patterns. There are a number of repetitive DNA sequences, and some genes are hypermethylated, leading to silencing of the gene.3-5 Demethylation of mCpG has been extensively studied, and ten-eleven translocation 1 (TET1) has been found to oxidize the methyl group in mC to give 5-hydroxymethylcytosine (hmC) as a first step in the demethylation pathway. 6-10 In subsequent studies, it was shown that hmC is also a substrate of TET1, 2 and 3, with the reaction of hmC producing the further oxidized 5-substituted cytosine derivatives, 5-formylcytosine (fC) and 5-carboxylcytosine (caC). 11-15 Because fC and caC are good substrates of thymine-DNA glycosylase (TDG), the bases can be converted to an appropriate form to trigger base-excision repair (BER) to return to CpG, the demethylated form (Fig. 1C).¹⁶ It was discovered that DNMT can catalyze the direct dehydroxymethylation of hmC¹ and decarboxylation of caC to give unmodified cytosine in DNA.¹⁸ Thus, hmC, fC and caC are primarily believed to be intermediates in the demethylation pathway. 19 However, hmC is believed to play

an important role in epigenetic programming of the genome and


Introduction of a formyl group at the C5-position of cytosine moiety gives an α,β -unsaturated aldehyde, and the C6-position of the cytosine become more electron-deficient than that of cytosine itself. Therefore, we hypothesized that a DNMT would reacts with

^a Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan

^b Department of Molecular Microbiology and Immunology, Nagasaki University School of Medicine, Nagasaki 852-8501, Japan

regulation of tissue-specific gene expression and, therefore, could add another layer of complexity to the intricate network of epigenetic regulation.^{20,21} Recently, Bachman et al. reported that fC levels in mammalian DNA are not correlated with those of its precursors, mC and hmC, or its metabolite caC.²² Many proteins, including transcriptional regulators, DNA repair factors and chromatin regulators, have been known to preferentially bind to ODNs containing fC compared to those containing only mC or hmC.^{23,24} X-ray crystallography of a duplex ODN containing (fCpG)₃ revealed helical underwinding, and these conformational changes may directly control the recruitment of fC reading proteins.²⁵ Therefore, fC may have functional roles in DNA that go beyond being simply a demethylation intermediate. Here, we found that an ODN containing fC in a CpG sequence reacts with DNMTs through the formation of a covalent bond, similarly to ODNs containing 5-aza-2'-deoxycytidine (d^NC), ²⁶⁻²⁸ 5-fluoro-2'-deoxycytidine (d^FC) ^{29,30} and zebularine.31 They act as suicide inhibitors for DNMTs by covalent bond formation between the C6-position of the base moieties and a catalytically essential Cys residue same as natural methylation mechanism (Fig. 1B) after incorporation at the CpG site in DNA by DNA polymerases. 17-19

^{*} Corresponding author.

Figure 1. (A) Methylation by DNA cytosine-5 methyltransferases (DNMTs) with SAM as a cofactor. (B) Plausible mechanism of cytosine methylation by DNMTs. (C) Methylation of cytosine and demethylation pathways. ^{17–19} (D) Sequences of synthesized ODNs containing d^FC, fC and 5-methyl-2'-deoxycytidine (mC).

an ODN having fCpG sequences similar to d^NC, d^FC and zebularine (Fig. 2A).

Results and discussion

First, we calculated electron density of the C6-position by Mulliken population analysis (Fig. 3). Cytosine revealed at +0.11, and FC

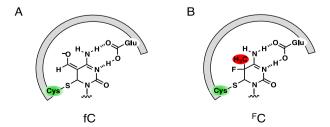
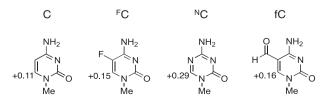



Figure 2. Plausible complex structures of (A) fC and (B) FC with DNMTs.

and ^NC are more electron-negative as +0.15 and +0.29, respectively. The formyl group also decreased the electron density at the C6position as +0.16 quite similar to that of FC. Therefore, fC could react with the Cys residue at the active site of DNMT from the point of the electron negativity at the C6-position. On the other hand, a size of a substituent at the C5-position of cytosine in the CpG sequence is known to be important for recognition by DNMT. In a 5-halogenocytosine series, only the 5-fluorocytosine (FC) in the CpG sequence showed to react with DNMTs in the presence of SAM as shown in Figure 2B. Although a size of the 5-chloro and 5-bromo substituents is similar to that of a methyl group, the dsODNs containing these substituents were not recognized as inhibitors or substrates by DNMTs, due might be sterical crash with the Pro in the active site.³² A size of the formyl group is sterically less hindered and planar by the sp² carbon. Therefore, we synthesized ODN containing fC (ODN-fC) for the examination of the reaction with DNMTs.

The ODNs containing fC (ODN-fC) were prepared using a method we previously described during studies of DNA oxidative lesions.³³ ODN-FC was used for control experiments as a covalent bond-forming ODN, and complementary ODN-G and ODN-M were also synthesized. To investigate the interaction of ODN-fC with DNMT, we first studied a bacterial DNMT, M.Hpall, from Haemophilus parainfluenzae. M.HpaII typically methylates the internal 2'-deoxycytidine in the target sequence 5'-CCGG-3', but in our studies, fC was substituted in place of the internal 2'-deoxycytidine (ODN-fC). Annealing ODN-G with 5'-32P-labeled ODN-fC or ODN-FC gave the double-stranded (ds)-fC:G and ds-FC:G, respectively (Fig. 1D). Each ds-ODN was incubated with 4 equiv of M.HpaII at 37 °C for 5–60 min. The reactions were quenched with loading buffer containing 7 M urea, and the reaction mixture was analyzed by denaturing polyacrylamide gel electrophoresis (PAGE). The reaction with ds-fC:G showed rapid and efficient formation of an ODN-M.HpaII complex, giving greater than 90% yield after 5 min reaction time (Fig. 4A, lane 1). The formyl group was allowed to recognize by the DNMT from our experiments. A formyl group (van Der Waals surface (vDW): 34.1 by Maestro 10 software) is sterically smaller than hydroxymethyl (vDW: 41.4) and carboxyl (vDW; 39.6) groups and a same size as a methyl group (vDW; 33.2) by its sp² orbital and hydrogen substituent. This association rate is comparable to that of a previously reported disulfide-based DNA probe.³⁴ The high binding affinity of the ODN may cause nonsequence-specific binding to DNMTs. To investigate whether formation of the covalent linkage between ODN-fC and M.HpaII is sequence specific or not, we examined ODN-fC*, in which the external dC in 5'-CCGG-3' was replaced with fC (Fig. 1D). In this case, M.HpaII did not form a complex with ds-fC*:G/M at all (Fig. S1). Therefore, the methyltransferase binds to ds-fC:G with a sequence specific manner. On the other hand, ds-FC:G showed a band corresponding to a complex with M.HpaII in 40% yield after 60 min reaction time (Fig. 4A, lane 8). It was reported that ODNs containing d^NC (decitabine, a clinically approved drug for treatment of myelodysplastic syndrome) in a CpG sequence instead of cytosine had a high rate of a complex formation with M.HhaI in both the absence and presence of SAM and S-adenosyl-L-homocys-

Figure 3. Mulliken population of C, ^FC, ^NC and fC at the C6-position calculated by Jaguar 7.7.

Download English Version:

https://daneshyari.com/en/article/5155635

Download Persian Version:

https://daneshyari.com/article/5155635

<u>Daneshyari.com</u>