ELSEVIER Contents lists available at ScienceDirect ## **Bioorganic & Medicinal Chemistry Letters** journal homepage: www.elsevier.com/locate/bmcl ## Nucleobase azide-ethynylribose click chemistry contributes to stabilizing oligonucleotide duplexes and stem-loop structures Yoshiaki Kitamura ^{a,b}, Ryo Asakura ^a, Koki Terazawa ^a, Aya Shibata ^{a,b}, Masato Ikeda ^{a,b,c,d}, Yukio Kitade ^{a,b,e,*} - ^a Department of Biomolecular Science, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan - ^b Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan - ^c United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan - d Gifu Centre for Highly Advanced Integration of Nanosciences and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan - ^e Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, Aichi 470-0392, Japan #### ARTICLE INFO #### Article history: Received 24 January 2017 Revised 25 March 2017 Accepted 6 April 2017 Available online 8 April 2017 Keywords: Click chemistry Ethynylribose derivatives Nucleobase azide analogs Oligonucleotides Triazoles #### ABSTRACT The formation of 1,4-disubstituted 1,2,3-triazoles through copper-catalyzed azide–alkyne cycloaddition (CuAAC) in oligonucleotides bearing 1-deoxy-1-ethynyl- β -p-ribofuranose (R^E) can have a positive impact on the stability of oligonucleotide duplexes and stem-loop structures. © 2017 Elsevier Ltd. All rights reserved. Copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) has been applied to the synthesis of functional molecules in a wide range of fields, including the biological and material sciences, owing to its selectivity, reliability, and versatility.^{1,2} CuAAC has also been widely used for the post-modification of oligonucleotides (ONs).3 To incorporate ethynyl residues into ONs by the standard phosphoramidite solid-phase method, various nucleic acid mimics bearing ethynyl groups and their phosphoramidite derivatives, as well as their solid phase-linked monomers, have been developed. We have also engaged in the development of versatile probes possessing an ethynyl unit and post-labeling methods using CuAAC. 4,5 As previously demonstrated by our group. ONs bearing arvl acetylene derivatives, namely, 5-ethynyl-1,3-benzenedimethanol (BE) and (S)-4-ethynylmandelol (M^E), rapidly react at room temperature with azide compounds in the absence of copper ligands, and the corresponding labeled ONs are obtained in excellent yield.^{4,5} Double-stranded oligonucleotides containing B^E or M^E inside the sequence were less stable than that of the corresponding standard oligonucleotide duplexes.⁵ We have recently developed an efficient stereoselective synthesis of 1-deoxy-1-ethynyl- β -D-ribofuranose (R^E), and demonstrated that it reacts with azide compounds several times faster than B^E under CuAAC conditions. 6 R^E is the simplest acetylenic β -C-nucleoside, and its phosphoramidite derivative (1) can be used for the construction of various ON-based functional tools. $^{7.8}$ Obika and Hari reported the thermal stability of ONs possessing 1-substituted 1,2,3-triazole deoxyribonucleosides prepared from DNA oligomers bearing 1,2-dideoxy-1-ethynyl- β -D-ribofuranose, a 2-deoxy analog of R^E , via CuAAC with several simple aliphatic and aromatic azides. These DNA oligomers carrying 1,2,3-triazoles stabilize the duplex better than the corresponding DNA oligomers before CuAAC. Against this background, we became interested in the thermal stability of ONs bearing nucleobase-substituted 1,2,3-triazole nucleosides derived from R^E . Here, we describe the synthesis of RNA oligomers bearing R^E and the thermal stability of the ONs before and after CuAAC with azide compounds, including nucleobases with azide moieties (Scheme 1). In this study, 9-azidomethyladenine (2) and 1-azidomethylthymine (3) were used as purine- and, pyrimidine-type azides, respectively. The phosphoramidite derivative of R^E (1) was prepared from the corresponding unprotected R^E through a general synthetic protocol by the following series of reactions⁷: 4,4′-dimethoxytrityl (DMTr) protection of 5-OH, *tert*-butyldimethylsilyl (TBDMS) protection of 2-OH, and phosphitylation of 3-OH. However, the protocol afforded the 2- and 3-protected isomers, which are frequently difficult to separate, in the second silylation step. Even in the case of R^E, it is ^{*} Corresponding author at: Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan. E-mail address: ykkitade@gifu-u.ac.jp (Y. Kitade). Scheme 1. Synthesis of oligonucleotides bearing nucleobase-substituted 1,2,3-triazole nucleosides by CuAAC post-modification method. not easy to isolate the desired 2-protected isomer by column chromatography on silica gel. To synthesize several ONs containing R^E, we have developed a scalable synthetic method for **1** without selective protection of 2-OH in the presence of both 2-OH and 3-OH.¹⁰ In this protocol, the key intermediate **7** can be obtained from **6** with complete stereoselectively. Nucleobases bearing azide moieties **2** and **3** were prepared according to previous reports (Scheme S1 in Supporting Information).¹¹⁻¹³ Three RNA oligomers bearing R^E (ON 14-16) were synthesized using an automated nucleic acid synthesizer with phosphoramidite derivative 1. Control and/or complementary strands (ON 10-13) without R^E were also prepared (Table 1). Subsequently, the click reaction¹⁴ between ONs **14–16** and a nucleobase bearing an azide moiety (2 or 3) was examined under our previously optimized conditions (Scheme 1).4 The sequences of the corresponding RNA oligomers containing nucleobase-substituted 1.2.3-triazole nucleosides (ONs 17-22) are depicted in Table 1. The structures of these ONs were confirmed by MALDI-TOF/MS analysis. ON 16, ON 21 and ON 22 was used to investigate the effect of an extra mismatch nucleoside adjacent to RE or nucleobase-substituted 1,2,3triazole nucleosides on duplex stability. Hybridization experiments were performed using double-stranded RNA (dsRNA) (ON 10/ON 11) and RNA/DNA duplex (ON 11/ON 12) as reference molecules. The $T_{\rm m}$ values of dsRNAs are summarized in Table 1. The dsRNA oligomers with R^E at the centre of the sequence (ON 11/ON 14 and ON 10/ON 15) had almost equal stability. The $T_{\rm m}$ value of the dsRNA between RNA oligomers including cytidine, which can be flipped out, adjacent to RE (ON **16**) and ON **10** resembled that of dsRNA with R^E at the centre (ON 10/ON 15). ONs tethered to AT base-pairing nucleobases via CuAAC greatly stabilized the duplex in all sequences. The $T_{\rm m}$ values of ON **11**/ON **18** ($T_{\rm m}$ = 27.2 °C), ON **10**/ON **19** ($T_{\rm m}$ = 28.7 °C) and ON **10**/ON **21** ($T_{\rm m}$ = 29.8 °C) were comparable with the full complementary dsRNA (ON **10**/ON **11**, $T_{\rm m}$ = 28.6 °C). However, duplexes of ONs bearing mismatched nucleobases were less stable than those of ONs containing R^E. Furthermore, stability was significantly reduced in dsRNAs bearing a flipped nucleoside next to mismatched nucleobases (ON 10/ON 22). According to energy-minimized molecular models using Gaussian, a nucleobase linked to 1.2.3-triazole can form a base pair with a complementary nucleobase of the opposite strand (Fig. S1 in Supporting Information). Examination of the RNA/DNA duplexes showed that base-pairing nucleobases introduced by CuAAC enhanced the stability of the duplexes. The thermal stability of the RNA/DNA duplexes containing base-pairing nucleobase-substituted 1,2,3-triazole nucleosides was lower than that of corresponding complementary RNA/DNA molecules (ON 11/ON 12 vs ON 12/ON 19). Interestingly, the degree of stability of ON 12/ON 21 ($T_{\rm m}$ = 21.9 °C) was superior to **Table 1** $T_{\rm m}$ values of double-stranded ONs containing R^E or 1,2,3-triazole nucleosides. | No. of ON | Sequence | T _m (°C) | No. of ON | Sequence | T _m (°C) | |------------------------------|--|---------------------|------------------------------|--|---------------------| | ON 10
ON 11 | 5'-ииииииииииии-3'
5'-ааааааааааааа-3' | 28.6 | ON 10
ON 21 | 5'-иииииииииииии-3'
5'-аааааааR ^A caaaaaa-3' | 29.8 | | ON 14
ON 11 | 5'-uuuuuuuR ^E uuuuuuu-3'
5'-aaaaaaaaaaaaa-3' | 21.3 | ON 10
ON 22 | 5'-иииииииииииии-3'
5'-аааааааR ^T caaaaaaa-3' | 11.9 | | ON 17
ON 11 | 5'-uuuuuuuR ^A uuuuuuu-3'
5'-aaaaaaaaaaaaa-3' | 14.0 | ON 12
ON 11 | 5'-TTTTTTTTTTTTT-3'
5'-aaaaaaaaaaaaaa-3' | 35.0 | | ON 18
ON 11 | 5'-uuuuuuuR ^T uuuuuuu-3'
5'-aaaaaaaaaaaaa-3' | 27.2 | ON 12
ON 15 | 5'-TTTTTTTTTTTTT-3'
5'-aaaaaaaR ^E aaaaaaa-3' | 20.7 | | ON 10
ON 15 | 5'-иииииииииииии-3'
5'-аааааааR ^E аааааа-3' | 20.2 | ON 12
ON 19 | 5'-TTTTTTTTTTTTT-3'
5'-aaaaaaaR ^A aaaaaaa-3' | 23.6 | | ON 10
ON 19 | 5'-иииииииииииии-3'
5'-ааааааR ^A аааааа-3' | 28.7 | ON 12
ON 16 | 5'-TTTTTTTTTTTTT-3'
5'-aaaaaaaR ^E caaaaaaa-3' | 15.0 | | ON 10
ON 20 | 5'-иииииииииииии-3'
5'-ааааааа ^Т аааааа-3' | 18.7 | ON 12
ON 21 | 5'-TTTTTTTTTTTTT-3'
5'-aaaaaaaR ^A caaaaaa-3' | 21.9 | | ON 10
ON 16 | 5'-uuuuuuuuuuuuu-3'
5'-aaaaaaR ^E caaaaaaa-3' | 20.1 | ON 13
ON 16 | 5'-TTTTTTTGTTTTTT-3'
5'-aaaaaaaR ^E caaaaaaa-3' | 20.7 | ^aSmall letters indicate ribonucleosides and capital letters show 2'-deoxyribonucleosides. ^bR^E, R^A and R^T denote 1-deoxy-1-ethynyl-β-p-ribofuranose, 1-[1-(adenine-9-yl)methyl-1*H*-1,2,3-triazol-4-yl]-1-deoxy-β-p-ribofuranose (**23**), and 1-[1-(thymine-1-yl)methyl-1*H*-1,2,3-triazol-4-yl]-1-deoxy-β-p-ribofuranose (**24**), respectively. ^cMeasurements were carried out in 10 mM Na₂HPO₄/NaH₂PO₄ (pH 7.0), and 100 mM NaCl, with 3.0 μM of each oligonucleotide. ### Download English Version: # https://daneshyari.com/en/article/5156268 Download Persian Version: https://daneshyari.com/article/5156268 <u>Daneshyari.com</u>