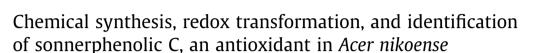

ARTICLE IN PRESS


Bioorganic & Medicinal Chemistry Letters xxx (2017) xxx-xxx

Bioorganic & Medicinal Chemistry Letters

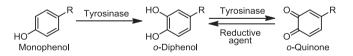
journal homepage: www.elsevier.com/locate/bmcl

Takehiro Iwadate^a, Ken-ichi Nihei^{a,b,*}

^a Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan ^b Department of Applied Biological Chemistry, Faculty of Agriculture, Utsunomiya University, Tochigi 321-0943, Japan

ARTICLE INFO

Article history: Received 27 December 2016 Revised 16 February 2017 Accepted 22 February 2017 Available online xxxx

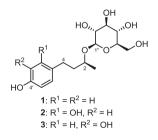

Keywords: Sonnerphenolic C Epirhododendrin Antioxidant Redox transformation

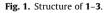
ABSTRACT

Sonnerphenolic C (**3**), which was predicted in a redox product of epirhododendrin (**1**) isolated from *Acer nikoense*, was synthesized for the first time via the epimeric separation of benzylidene acetal intermediates as a key step. From a similar synthetic route, **1** was obtained concisely. As a result of their antioxidative evaluation, only **3** revealed potent activity. The redox transformation of **1** into **3** was achieved in the presence of tyrosinase and vitamin C. Moreover, **3** was identified in the decoction of *A. nikoense* by HPLC analysis with the effective use of synthesized **3**. Thus, a novel naturally occurring antioxidant **3** was developed through the sequential flow including redox prediction, chemical synthesis, evaluation of the activity, and identification as the natural product.

© 2017 Elsevier Ltd. All rights reserved.

Tyrosinase (polyphenol oxidase, EC 1.14.18.1), a copper-containing oxidoreductase, is widely distributed in nature. Its active site recognizes various phenolic compounds as substrates, and consequently, corresponding *o*-quinones are generated by this enzymatic oxidation (Scheme 1).^{1.2} The *o*-quinones are generally labile and can be easily transformed into biopolymers including melanin. Melanin formation is related to skin aging, skin cancer, and Parkinson disease.^{3–5} Accordingly, various melanogenesis-controlling agents have been developed from extensive research on organic synthesis and/or natural product chemistry.^{6–10}


Scheme 1. Redox transformation of phenolic compounds in the presence of tyrosinase and reductive agent.


In the presence of reductive agents such as vitamin C, the generated *o*-quinones are readily reduced to stable *o*-diphenols.¹¹ The redox transformation of polyphenols occurs frequently in plant materials because they are rich sources of tyrosinase, phenolic compounds, and reductive agents.¹² Several *o*-diphenols have been identified in nature, with their biological activities clearly differing

E-mail address: nihei98@cc.utsunomiya-u.ac.jp (K. Nihei).

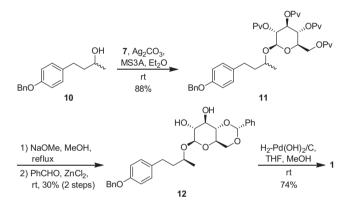
http://dx.doi.org/10.1016/j.bmcl.2017.02.054 0960-894X/© 2017 Elsevier Ltd. All rights reserved. from those of the corresponding monophenols.^{13,14} For instance, the antioxidant activity of *o*-diphenols is preferred to that of their monophenols.^{15,16} Thus, this redox transformation can be meaningful for producing unique *o*-diphenols as natural antioxidants.

Acer nikoense (Aceraceae), called "Megusurinoki" in Japanese, is a folk medicinal plant used for curing eye disease.¹⁷ Epirhododendrin (1) is a characteristic monophenol in *A. nikoense* (Fig. 1),¹⁸ while several phenolic compounds have been isolated from this plant.^{19–23} Recently, a novel and potent tyrosinase inhibitor, rhododendrol glycoside **2**, was developed by the structural modification of **1**.^{9,24} This suggests that **1** can easily move closer to the active site of tyrosinase. When **1** acts as a substrate of tyrosinase, an *o*-diphenol sonnerphenolic C (**3**) is possibly generated with the aid of appropriate reductive agents.

^{*} Corresponding author at: Department of Applied Biological Chemistry, Faculty of Agriculture, Utsunomiya University, Tochigi 321-0943, Japan.

Recently, **3** was isolated from *Sonneratia ovata* (Sonneratiaceae) which showed selective and moderate cell-growth inhibitory effect against MCF-7, a hormone-responsive breast cancer cell.²⁵ However, the existence of **3** in *A. nikoense* and its antioxidant potency are still unclear. Accordingly, we studied concise syntheses of **1** and **3** via glycosylation and epimeric separation as key steps, and evaluated their antioxidant activity. In addition, redox conversion of **1** to **3** and identification of **3** in the extract of *A. nikoense* were investigated by the effective use of synthetic compounds.

Through aldol condensation between aldehyde 4^{26} and acetone under the basic aqueous condition, enone 5 was obtained in 91% yield (Scheme 2).²⁷ In the presence of sodium borohydride and cobalt chloride hydrate, reduction of 5 smoothly proceeded to furnish alcohol **6** in 84% yield,²⁸ although this reaction was sluggish in the synthesis of $2^{9,24}$ A comparison of 2.4-dibenzyloxy derivatives indicates that the effects of steric hindrance and/or electronic donation from the 3.4-dibenzyloxy group are insignificantly influenced on its enone part. Alternatively, selective hydrogenation using a palladium ethylenediamine complex on activated carbon, followed by hydride reduction, has been applied in the transformation of **5** into **6** in 90% yield.^{9,24} However, the reduction with sodium borohydride and cobalt chloride hydrate was selected in order to reduce synthesis steps and to avoid the dissolution problem of **5** in toluene which is an appropriate solvent for selective hydrogenation.²⁴

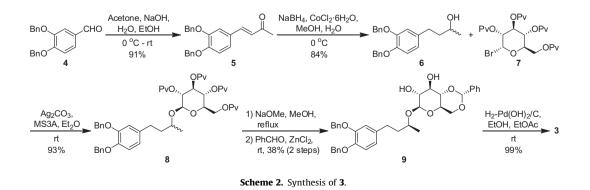

Glycosylation of **6** was performed under the Koenigs-Knorr condition using pivalate **7** as the glucose donor.²⁹ Accordingly, β -glucoside **8** was furnished in high yield (93%). In this step, diethyl ether, rather than dichloromethane, acted as an appropriate solvent, whereas the use of ethereal solvents was unsuitable for increasing the production rate of α -glucoside.³⁰ Schmidt glycosylation³¹ and Koenigs-Knorr glycosylation using acetylated sugar failed to obtain the corresponding β -glucosides and complex mixtures were detected by TLC analysis.

Removal of all pivalyl groups in **8** with sodium methoxide, followed by acetalization with benzaldehyde in the presence of Lewis acid, afforded diol **9** in 38% yield over two steps. Epimeric mixtures of **8** as well as the corresponding epimeric intermediates without pivalyl groups could not be separated by various methods including crystallization and flash chromatography. In contrast, **9** and its epimer, which was obtained in 33% over two steps, were easily isolated by silica gel column chromatography.³² The stereochemistry of the aglycone part of **9** was determined as *S* by comparison with the previously reported ¹H data of similar phenolic glucosides.³³

Finally, catechol **3** was furnished from **9** in excellent yield (99%) by hydrogenolysis using Pearlman's catalyst.³⁴ The ¹H and ¹³C NMR data of synthesized **3** were fully consistent with those of natural **3**.²⁵ Consequently, **3** was synthesized in 27% yield from **4** over six steps for the first time. However, the sign of the specific rotation of synthesized **3** ($[\alpha]_{27}^{27}$ –17.5, *c* 1.0, MeOH) was different from

that of natural **3** ($[\alpha]_D^{25}$ +33.4, *c* 1.8, MeOH).²⁵ According to previous reports,^{24,29,32} all congeners such as **1** and **2**, and their epimers, possessed the negative sign, suggesting that unanticipated errors occur in the measurement step of the specific rotation value of natural **3**.

Although asymmetric synthesis of **1** has been accomplished via the enzymatic procedure,²⁹ the application of the synthetic scheme of **3** led to a concise preparation of **1** (Scheme 3). Racemic alcohol 10^{35} was glycosylated in 88% yield by Koenigs-Knorr method using **7** as the glucose donor. The β -glucoside **11** obtained was converted to diol **12** ($[\alpha]_{D}^{27}$ –20.2, *c* 0.23, MeOH) in 30% yield over consecutive steps including transesterification and benzylidene acetalizaion. By using silica gel column chromatography, **12** was isolated as a single isomer, which was confirmed by comparison with the NMR data of analogs of **12**.^{24,31} Hydrogenolysis of **12** afforded **1** in 74% yield. ¹H and ¹³C NMR data of **1** were fully consistent with those reported previously.³⁶ Therefore, **1** was synthesized from **10** in 20% over four steps.


Scheme 3. Synthesis of 1.

Antioxidant activities of **1** and **3** were evaluated using 1,2-diphenyl-2-picrylhydrazyl (DPPH) (Table 1).³⁷ Monophenol **1** was inactive to free-radical scavenging, while 1 mol of diphenol **3** eliminated 2.23 mol of DPPH.^{38–40} This efficacy was comparable to those of vitamin C and vitamin E. As observed above, the

Table 1		
Antioxida	nt activity of 1 , 3 , vi	itamin C, and vitamin E.
Compo	unde tested	DDDLL concumption

Compounds tested	DPPH consumption ^a
1	0
3	2.23 ± 0.08
Vitamin C	2.47 ± 0.19
Vitamin E	1.86 ± 0.31

^a The values indicate that one molecule of the tested compound scavenges how many molecules of DPPH, and represent means ± SE of three different experiments.

Please cite this article in press as: Iwadate T., Nihei K.-i. Bioorg. Med. Chem. Lett. (2017), http://dx.doi.org/10.1016/j.bmcl.2017.02.054

Download English Version:

https://daneshyari.com/en/article/5156909

Download Persian Version:

https://daneshyari.com/article/5156909

Daneshyari.com