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a b s t r a c t

Negative modulators of metabotropic glutamate 2 & 3 receptors demonstrate antidepressant-like activity
in animal models and hold promise as novel therapeutic agents for the treatment of major depressive dis-
order. Herein we describe our efforts to prepare and optimize a series of conformationally constrained
3,4-disubstituted bicyclo[3.1.0]hexane glutamic acid analogs as orthosteric (glutamate site) mGlu2/3

receptor antagonists. This work led to the discovery of a highly potent and efficacious tool compound
18 (hmGlu2 IC50 46 ± 14.2 nM, hmGlu3 IC50 = 46.1 ± 36.2 nM). Compound 18 showed activity in the
mouse forced swim test with a minimal effective dose (MED) of 1 mg/kg ip. While in rat EEG studies it
exhibited wake promoting effects at 3 and 10 mg/kg ip without any significant effects on locomotor activ-
ity. Compound 18 thus represents a novel tool molecule for studying the impact of blocking mGlu2/3

receptors both in vitro and in vivo.
� 2016 Elsevier Ltd. All rights reserved.

Metabotropic glutamate (mGlu) receptors belong to the class
C GPCR family and consist of eight known subtypes which have
been historically divided into three groups (Group I: mGlu1 &5;
Group II: mGlu2 &3; Group III: mGlu4, 6, 7 &8) The Group II mGlu
receptors are highly expressed in prefrontal cortex, striatum,
thalamus, hippocampus, and amygdala, where they act to regulate
neuronal excitability via presynaptic, postsynaptic and glial mech-
anisms. Activation of mGlu2/3 receptors is known to inhibit the
synaptic release of glutamate, leading to a reduction of synaptic
transmission. Accordingly, mGlu2/3 agonists (e.g. (1S,2S,5R,6S)-
2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740),
(1R,4S,5S,6S)-4-amino-2-thiabicyclo[3.1.0]hexane-4,6-dicarboxylic
acid 2,2-dioxide (LY404039), Fig. 1) produce beneficial effects in
rodent models (anxiety, psychosis, pain) thought to be driven by
excessive glutamate neurotransmission, and oral prodrugs of these
agents ((1S,2S,5R,6S)-2-(L-Alanylamino)bicyclo[3.1.0]hexane-2,

6-di carboxylic acid (LY544344), (1R,4S,5S,6S)-4-(L-methionyl
amino)-2-thiabicyclo[3.1.0]hexane-4,6-dicarboxylic acid 2,2-diox-
ide (LY2140023)) have demonstrated efficacy in generalized anxi-
ety disorder [1] and schizophrenia patients [2], respectively.

Conversely, mGlu2/3 receptor antagonists facilitate the
presynaptic release of glutamate and thereby enhance synaptic
AMPA- and NMDA-receptor activation and neurotransmission
under conditions where mGlu2/3 receptors are tonically activated.
Consistent with this, preclinical studies have demonstrated that
mGlu2/3 antagonists such as (1S,2S)-2-[(1S)-1-amino-1-carboxy-
2-(9H-xanthen-9-yl)ethyl]cyclopropanecarboxylic acid (LY341495)
and (1R,2R,3R,5R,6R)-2-amino-3-[(3,4-dichlorobenzyl)oxy]-6-fluo-
robicyclo[3.1.0]hexane-2,6-dicarboxylic acid (MGS0039) (Fig. 1)
elicit glutamate-driven AMPA receptor-dependent antidepressant
[3] and wake-promoting [4] responses in rodents.

As part of our ongoing research efforts targeting these recep-
tors, we explored the effect of structural modifications at the C3-
and C4-positions of LY354740 on functional mGlu2/3-mediated
activity. Literature data [18] as well as our own in-house structure
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activity relationship (SAR) data as exemplified by compound (+/�)-
1 [5], showed that substitution at the C3- position of LY354740
produced compounds that are functional antagonists. Conversely,
we have published an extensive SAR of analogs of LY354740 with
a range of C4-postion substituents that exhibit agonist activity
[6,7]. In order to further understand the effects of substituents at
these two positions on functional activity we set out to develop
synthetic methodologies that would enable their dual functional-
ization. This work has led to the identification of a number of novel
potent and selective mGlu2/3 receptor antagonists.

We began our work employing the previously reported enan-
tiomerically pure ketone 2 [6] which can be synthesized on
multi-kilogram scale (Scheme 1). Ketone 2 was reduced to give
the C4b-alcohol 3 in high yield and with excellent diastereoselec-
tivity using L-Selectride�. The alcohol was converted to the corre-
sponding mesylate using methyl sulfonyl chloride (MsCl) and
triethyl amine (TEA) and then subjected to tetrabutylammonium
fluoride (TBAF) to cleanly give the elimination product 4 in good
yield along with unreacted alcohol 3 which could be recovered
by normal phase chromatography. Alkene 4 was oxidized using
catalytic osmium tetroxide (OsO4) and N-methylmorpholine-N-
oxide (NMO) as a co-oxidant to give the expected cis C3b,C4b-diol

5 in high diastereoselective (>50:1) and synthetic yield through
oxidant approach from the less sterically hindered face of the bicy-
clo[3.1.0]hexane ring system. Regioselective alkylation of the C3
carbinol was achieved using silver oxide (Ag2O) and tetrabutyl
ammonium iodine (TBAI) and a benzyl halide to give a mixture
of the mono C3 and C4 benzyl ethers 6 and 7 that were separated
by normal phase chromatography. In this way, the diol 5was selec-
tively alkylated with 3,4-dichlorobenyl bromide to give a 3:1 mix-
ture of the 3,4-dichlorobenzyl ether intermediates 6a and 7a that
were readily separated by normal phase column chromatography
to give pure intermediate 6a in 72% yield. Structural confirmation
of 6a was established by proton NMR [8]. Exhaustive deprotection
of intermediate 6a in glacial acetic acid and water using our previ-
ously reported procedure [6] at elevated temperatures in a micro-
wave provided the C4b-hydroxyl-C3b-3,4-dichlorobenzyl ether 11
as a white solid in 74% yield and in high chemical purity (as deter-
mined by proton NMR and LCMS) following concentration of the
reaction mixture and trituration of the recovered solid with water
and ether. Using a similar process a series of C4b-hydroxyl-C4b-
benzyl ethers 8–15 were prepared and their functional hmGlu2

and hmGlu3 activity was evaluated.
Based on our initial biochemical results of the C4b-hydroxyl-

C4b-benzyl ethers 8–15 (Table 1), further investigation of the C4
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Fig. 1. Literature and in-house mGlu2/3 receptor ligands.
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Scheme 1. Reagents and Conditions: (a) L-Selectride� (1 M in THF, 1.5 eq.), THF,
0 �C then 30% H2O2, NaHCO3 (quantitative); (b) MsCl, TEA; (c) TBAF, THF, reflux
(76% 2 steps); (d) OsO4 (0.05 eq.), NMO (2.5 eq.), acetone, water [>50:1dr] (91%); (e)
RCH2Br (1.5 eq.), Ag2O (1.5 eq.), TBAI (1 eq.), DMF [generally 3:1 regioselectivity for
6 vs 7] (R = 3,4-diCl-Ph, 94%); (f) Acetic acid, water, 140 �C, microwave (20–84%).

Table 1
cAMP hmGlu2 and hmGlu3 receptor functional activity for C4b-hydroxyl-C3b-benzyl
ethers.

R

Compds. R hmGlu2 IC50

(nM) ± SEM [19]
hmGlu3 IC50

(nM) ± SEM [19]

8 Ph 306 ± 36.3 239 ± 139
9 3-Cl-Ph 280 ± 142 178 ± 136
10 4-Cl-Ph 210 ± 22.7 145 ± 18.4
11 3,4-diCl-Ph 169 ± 56 153 ± 130
12 2,5-diCl-Ph 387 ± 94.3 185 ± 68.7
13 2,3-diCl-Ph 149 ± 31.4 83.2 ± 80.2
14 3-F-4-Cl-Ph 225 ± 56.9 127 ± 84.8
15 3-Me-4-F-Ph 215 ± 65.4 85.0 ± 16.9
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