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a b s t r a c t

Practical classification problems often involve some kind of trade-off between the
decisions a classifier may take. Indeed, it may be the case that decisions are not equally
good or costly; therefore, it is important for the classifier to be able to predict the risk
associated with each classification decision. Bayesian decision theory is a fundamental
statistical approach to the problem of pattern classification. The objective is to quantify
the trade-off between various classification decisions using probability and the costs that
accompany such decisions. Within this framework, a loss function measures the rates of
the costs and the risk in taking one decision over another.

In this paper, we give a formal justification for a decision function under the Bayesian
decision framework that comprises (i) the minimisation of Bayesian risk and (ii) an
empirical decision function found by Domingos and Pazzani (1997). This new decision
function has a very intuitive geometrical interpretation that can be explored on a Cartesian
plane. We use this graphical interpretation to analyse different approaches to find the best
decision on four different Naïve Bayes (NB) classifiers: Gaussian, Bernoulli, Multinomial,
and Poisson, on different standard collections. We show that the graphical interpretation
significantly improves the understanding of the models and opens new perspectives for
new research studies.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The task of data classification is today commonly applied in many contexts, ranging from customer target marketing to
medical diagnosis, from biological data analysis to document categorisation. Practical classification problems often involve
some kinds of constraints with respect to the effectiveness of the classifier, which is usually measured in terms of false-
positive and/or false-negative rates. In some domains, these two rates may not be equally important. For example, for a spam
classification system, a mis-classified legitimate email is generally considered unacceptable, while a spam message classified
as non-spam is less serious (Kolcz, 2005).

Bayesian decision theory is a fundamental statistical approach to the problem of pattern classification (Duda, Hart, &
Stork, 2001). The objective is to quantify the trade-off between various classification decisions using probability and the
costs that accompany such decisions. In this cost-sensitive framework, we can choose a learning algorithm and optimise
its performance by tuning not only its parameters but also its misclassification costs. For example, in binary classification
problems, i.e. when we have only two categories c1 and c2, the Bayes decision rule can be interpreted as calling for deciding
one category for an object o if the likelihood ratio (which is the ratio between the two probabilities Pðojc1Þ and Pðojc2Þ)
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exceeds a threshold value t. This threshold is independent of the observation o and can be tuned by means of the misclassi-
fication costs (the details of this formulation are presented in Section 3):

t <
Pðojc1Þ
Pðojc2Þ

ð1Þ

where t is the threshold that depends on the misclassification costs and on the priors of the two categories, Pðc1Þ and Pðc2Þ.
This way of optimising classifiers is very effective for unbalanced binary classification tasks (Almeida, Almeida, & Yamakami,
2011; Metsis, Androutsopoulos, & Paliouras, 2006).

In the literature of pattern classification (Duda et al., 2001), NB classifiers have been shown to be one of the most efficient
and effective inductive learning algorithms for classification tasks, despite the strong unrealistic assumptions (see Appendix
A). The work by Domingos and Pazzani (1997) and the further study by Zhang (2005) define the conditions under which the
NB classifier is an optimal classifier. An important consideration to take into account when working with NB classifiers is that
there are simple linearly separable cases where the Bayesian classifier fails to predict the correct class; however, quoting
(Domingos & Pazzani, 1997) ‘‘a simple modification of the Bayesian classifier will allow it to perfectly discriminate all
positive examples from negatives: adding a constant to the discriminant function for the concept, or subtracting the same
constant from the discriminant function for its negation’’. This decision can be written in the following way:

Pðojc2ÞPðc2Þ < Pðojc1ÞPðc1Þ þ l ð2Þ

This constant l, which has an empirical justification, hides a more complex interpretation of the costs in the context of
cost-sensitive learning. In fact, it cannot be directly derived from the definition of costs in the cost-sensitive learning context.
To the best of our knowledge, this simple step, which has been empirically shown to be very effective, has never been
formally proven.

The main contributions of this paper are:

� A formal justification for a decision function under the Bayesian decision framework that comprises both (i) the minimi-
sation of Bayesian risk and (ii) an empirical decision function found by Domingos and Pazzani (1997). The decision have
the following linear form:

Pðojc2Þ < mPðojc1Þ þ q

where m and q depend on the mis-classification costs and can be seen as the angular coefficient and the intercept of a
linear function. Note that for q ¼ 0 we can derive Eq. (1) with m ¼ Pðc2Þ

Pðc1Þ
t, while for m ¼ 1 we obtain Eq. (2) with q ¼ l.

� Since this new decision function has a very intuitive geometrical interpretation that can be explored on a Cartesian plane,
we present an adaptation of the Angular Region algorithm (Di Nunzio & Micarelli, 2004) that can efficiently find a
(sub)optimal decision on a two-dimensional space.
� We use this graphical interpretation to analyse different approaches to find the best decision on four different Naïve

Bayes (NB) classifiers: Gaussian, Bernoulli, Multinomial, and Poisson, on different standard collection. We show that
the graphical interpretation significantly improves the understanding of the models and opens new perspectives for
new research studies.

The paper is organised as follows: in Section 2, we define the task of binary classification for NB classifiers. In Section 3,
we present the Bayesian decision theory framework that is at the base of our formulation of the problem. Section 4 defines
the new conditions and costs under which an optimal decision function which merges both Eqs. (1) and (2) can be found. In
Sections 5 and 6 we present the experimental analysis and the discussion of the results, respectively. In Section 7, we suggest
some of the related works, while in Section 8, we give our final remarks.

2. Binary classification

Binary classification is the task of classifying objects into two classes on the basis of some properties of the objects. The
usual notation to indicate these two classes is: c for the class of ‘positive’ examples, and �c for the class of ‘negative’ examples.
Often, real world classification problems have more than two classes, for example a set of classes C ¼ fc1; . . . ; ci; . . . ; cng. In
these cases, a common approach in machine learning is to define n binary classification problems, one for each class in the
set C. Given an object o and a set of categories C, if we want to decide whether o should be assigned to category ci 2 C, we can
build a simple probabilistic classifier that checks the following statement:

Pð�cijoÞ < PðcijoÞ ð3Þ

where �ci ¼ C n ci. Therefore, if the probability of the class ci is greater than the probability of its complement �ci we can assign
the object to ci.1 Since we do not know the value of PðcijoÞ of unseen objects (unless an ‘oracle’ tells us what the value of PðcijoÞ),
in order to predict the probability PðcijoÞ we need to reverse it by using the Bayes rule:

1 You may have noticed an inverted use of the inequality, which is usually written as PðcijoÞ > Pð�cijoÞ. This will help us maintain the same order (less than)
when presenting the Bayesian conditional risk in Section 3.
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