## Accepted Manuscript

Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers

Suqing Li, Zhihui Sang, Jingbo Zhao, Zhiyuan Zhang, Jue Cheng, Junying Zhang

PII: S0014-3057(16)30896-5

DOI: http://dx.doi.org/10.1016/j.eurpolymj.2016.08.007

Reference: EPJ 7442

To appear in: European Polymer Journal

Received Date: 29 April 2016 Revised Date: 19 July 2016 Accepted Date: 10 August 2016



Please cite this article as: Li, S., Sang, Z., Zhao, J., Zhang, Z., Cheng, J., Zhang, J., Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers, *European Polymer Journal* (2016), doi: http://dx.doi.org/10.1016/j.eurpolymj.2016.08.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## **ACCEPTED MANUSCRIPT**

# Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers

Suqing Li, Zhihui Sang, Jingbo Zhao\*, Zhiyuan Zhang, Jue Cheng, Junying Zhang

Key Laboratory of Carbon Fiber and Functional Polymers(Beijing University of Chemical Technology), Ministry of Education; State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Corresponding author: Jingbo Zhao (zhaojb@mail.buct.edu.cn), Tel: +8610-6443-4864

**ABSTRACT**: A simple non-isocyanate route synthesizing aliphatic thermoplastic polyurethane elastomers (TPUEs) with good thermal and mechanical properties is described. Melt transurethane co-polycondensation of a diurethanediol, i.e. bis(hydroxyethyl) hexanediurethane, with different poly(tetramethylene glycol)s was conducted, and a series of TPUEs were prepared. They were characterized by GPC, FT-IR,  $^{1}$ H-NMR, wide-angle X-ray scattering, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, atomic force microscope, and tensile test. The TPUEs exhibited an  $M_{\rm n}$  up to 40000 g/mol, an  $M_{\rm w}$  up to 90800 g/mol,  $T_{\rm m}$  from 125 °C to 161 °C, initial decomposition temperature at over 261 °C, tensile strength up to 24 MPa, elongation at break from 182% to 1476%, and resilience up to 98%. TPUEs with high  $T_{\rm m}$ , good tensile strength, and high resilience were prepared through a non-isocyanate route.

**Keywords:** Non-isocyanate route; Thermoplastic polyurethane elastomers; Transurethane polycondensation; Diurethanediol

#### Download English Version:

# https://daneshyari.com/en/article/5159685

Download Persian Version:

https://daneshyari.com/article/5159685

<u>Daneshyari.com</u>