Accepted Manuscript

Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies

M. Nofar, A. Tabatabaei, H. Sojoudiasli, C.B. Park, P.J. Carreau, M.-C. Heuzey, M.R. Kamal

PII: S0014-3057(17)30188-X

DOI: http://dx.doi.org/10.1016/j.eurpolymj.2017.03.031

Reference: EPJ 7780

To appear in: European Polymer Journal

Received Date: 1 February 2017 Revised Date: 8 March 2017 Accepted Date: 12 March 2017

Please cite this article as: Nofar, M., Tabatabaei, A., Sojoudiasli, H., Park, C.B., Carreau, P.J., Heuzey, M.-C., Kamal, M.R., Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies, *European Polymer Journal* (2017), doi: http://dx.doi.org/10.1016/j.eurpolymj.2017.03.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies

M. Nofar^{*1}, A. Tabatabaei², H. Sojoudiasli³, C.B. Park², P.J. Carreau³, M-C. Heuzey³, M.R. Kamal⁴

- 1: Department of Metallurgical and Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- 2: Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
 - 3: Center for High Performance Polymer and Composite systems (CREPEC), Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec, H3T 1J4, Canada
 - 4: CREPEC, Chemical Engineering Department, McGill University, Montreal, Quebec, H3A 2B2, Canada

* Corresponding Author: nofar@itu.edu.tr

Abstract

Blends of 75 wt% amorphous polylactide (PLA) with 25 wt% poly[(butylene adipate)-coterephthalate] (PBAT) and poly[(butylene succinate)-co-adipate] (PBSA) were prepared. The effects of PLA molecular weight and of two different mixing processes (i.e., internal mixer and twin-screw extruder) on the blend properties were investigated. The crystallization behavior, rheological properties, and morphology of these blends and neat polymers were firstly examined. The tensile properties and bead foaming behavior of the neat and blend systems were then investigated. Various blend morphologies could be obtained by using different molecular weight PLAs as well as different processing techniques. The tensile properties of the blends were significantly affected by the droplet size and PLA matrix molecular weight. Different microcellular bead foam structures ranging from low-density open-cell to high-density closed-cell were manufactured by using blends with different droplet morphologies as well as by using minor phase solid inclusions with different rigidities originated from different crystallization behavior.

Download English Version:

https://daneshyari.com/en/article/5159783

Download Persian Version:

https://daneshyari.com/article/5159783

<u>Daneshyari.com</u>