
Accepted Manuscript

Structural and Photoluminescence behavior of thermally stable Eu^{3+} activated $CaWO_4$ Nanophosphors via Li^+ incorporation.

P.V. Ramakrishna, T. Lakshmana Rao, Arvind Singh, B. Benarji, S. Dash

PII: S0022-2860(17)31020-7

DOI: 10.1016/j.molstruc.2017.07.076

Reference: MOLSTR 24103

To appear in: Journal of Molecular Structure

Received Date: 22 February 2017

Revised Date: 24 July 2017

Accepted Date: 25 July 2017

Please cite this article as: P.V. Ramakrishna, T. Lakshmana Rao, Arvind Singh, B. Benarji, S. Dash, Structural and Photoluminescence behavior of thermally stable Eu³⁺activated CaWO₄ Nanophosphors via Li⁺ incorporation., *Journal of Molecular Structure* (2017), doi: 10.1016/j. molstruc.2017.07.076

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Structural and Photoluminescence behavior of thermally stable Eu³⁺activated CaWO₄

Nanophosphors via Li⁺ incorporation.

P.V. Ramakrishna^{1,2*}, T. Lakshmana Rao², Arvind Singh³, B. Benarji⁴, and S. Dash^{2*}

¹ Department of Physics, Andhra University, Visakhapatnam, India-530003.

²Department of Physics and Astronomy, NIT- Rourkela, Rourkela-769008, India

³Department of Chemical Engineering and Technology, IIT (BHU), Varanasi-221005, India

⁴ Department of electronics and communication engineering, Andhra University,

Visakhapatanam-530003, India

Abstract:

We have studied the structural and photo physical analogue of Eu³⁺ activated CaWO₄

nanophosphors via Lithium (Li⁺=2, 5 7 and 10 at.%) ion incorporation. As-prepared (APS) samples

were annealed at 900 °C to eliminate unwanted organic moieties present in the sample and to

improve crystallinity. The samples are characterized employing X-ray diffraction (XRD), Fourier

transform IR spectroscopy (FTIR), UV-VIS spectroscopy, photoluminescence studies and lifetime

decay studies. FTIR features an absorption band at ~832 cm⁻¹, which correspond to its antisymmetric

vibrations into O-W-O band in the WO₄²⁻ tetrahedron. CaWO₄ having the scheelite type structure

with C_{4h} point group and I41/a space group. The surface morphology of the samples are studied with

Scanning Electron Microscopy (SEM). Lithium Co-doped CaWO₄:Eu³⁺ nanoparticles show red

luminescence because of strong host contribution and different energy transfer rates from host to

Eu³⁺ ions under 266nm excitations. Lithium ion enhances the crystallinity and radiative transition

rate thus results in higher emissive property. Calculated CIE co-ordinates of these Li⁺ doped 900 °C

annealed samples under 266 nm excitation is x = 0.65 & y = 0.34, which are closer to the standard

of NTSC (x = 0.67 & y = 0.33). This material may be potential candidates for white light emitting

diodes.

KEYWORDS: Energy Transfer, Thermal Stability, Lifetime.

Download English Version:

https://daneshyari.com/en/article/5160013

Download Persian Version:

https://daneshyari.com/article/5160013

<u>Daneshyari.com</u>