Accepted Manuscript

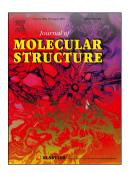
Synthesis, NMR and computational studies on tautomerism of dichloroacetate of hydroxyanthraguinone

Li Zhu, Wenfeng Wang, Junwei Miao, Xu Yin, Xiufang Hu, Yaofeng Yuan

PII: S0022-2860(17)30390-3

DOI: 10.1016/j.molstruc.2017.03.101

Reference: MOLSTR 23597


To appear in: Journal of Molecular Structure

Received Date: 30 December 2016

Revised Date: 25 March 2017 Accepted Date: 27 March 2017

Please cite this article as: L. Zhu, W. Wang, J. Miao, X. Yin, X. Hu, Y. Yuan, Synthesis, NMR and computational studies on tautomerism of dichloroacetate of hydroxyanthraquinone, *Journal of Molecular Structure* (2017), doi: 10.1016/j.molstruc.2017.03.101.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synthesis, NMR and computational studies on tautomerism of dichloroacetate of hydroxyanthraquinone

Li Zhu, Wenfeng Wang *, Junwei Miao, Xu Yin, Xiufang Hu, Yaofeng Yuan College of Chemistry, Fuzhou University, 350116, P. R. China

Abstract: Three dichloroacetate derivatives of hydroxyanthraquinone were synthesized.

NMR studies showed that only monoesterified derivative compound 1 had a tautomerization. Since monoetherified derivative of hydroxyanthraquinone did not show tautomerization, a hypothesis that nucleophilicity played an important role in the tautomerization was proposed. The molecular structures of monoesterified derivative compound 1 and diesterified derivative compound 2 were calculated by using DFT method, and the result showed that the electronic density of carbonyl at 9-position of compound 1 was much larger than that of compound 2, which indicated that the hypothesis mentioned above was reasonable.

Keyword: Tautomerism, hydroxyanthraquinone, NMR, computation, nucleophilicity

1. Introduction

Anthraquinone ring is an important privileged structure of anticancer drugs [1]. Anthraquinone ring can intercalate double helix structures of DNA of cancer cells due to its planar structure, which inhibits the duplication of DNA and leads death of cancer cells [2,3]. Anthraquinone ring also can transfer electrons to O₂ (see scheme 1) to generate ROS (reactive oxidative species) which can kill cancer cells selectively [4,5]. The existence of hydroxyl can strengthen the privileged structure of anthraquinone ring because it can stabilize the

Download English Version:

https://daneshyari.com/en/article/5161133

Download Persian Version:

https://daneshyari.com/article/5161133

<u>Daneshyari.com</u>