ARTICLE IN PRESS

Phytochemistry xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Cytotoxic indole alkaloids from the fruits of Melodinus cochinchinensis

Shun Shao ^{a,b}, Hao Zhang ^{a,b}, Chun-Mao Yuan ^b, Yu Zhang ^b, Ming-Ming Cao ^b, Hai-Yuan Zhang ^b, Yan Feng ^a, Xiao Ding ^b, Qiang Zhou ^a, Qing Zhao ^{a,*}, Hong-Ping He ^{a,b,*}, Xiao-Jiang Hao ^b

ARTICLE INFO

Article history:
Received 26 September 2014
Received in revised form 18 February 2015
Available online xxxx

Keywords: Melodinus cochinchinensis Apocynaceae Indole alkaloids Cytotoxicity

ABSTRACT

Eight indole alkaloids, melosines A–H, together with 13 known alkaloids, were isolated from the fruits of *Melodinus cochinchinensis*. The structure elucidation of isolated secondary metabolites was based on comprehensive spectroscopic data analysis. Melosine B showed moderate cytotoxic activity against five human cancer cell lines, HL-60, SMMC-7721, A-549, MCF-7, and SW480 with IC₅₀ values ranging from 1.6 to 8.1 μM.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Melodinus cochinchinensis, belongs to the genus Melodinus (Apocynaceae), is mainly distributed in Indochina, W. Malaysia, E. Himalayas, and Yunnan of China, and the fruits are used as ethnic drugs for abdominal pain, infantile malnutrition due to intestinal parasites, indigestion, and hernia (Tsiang and Li, 1995). Previous chemical studies on the genus led to the isolation of novel and/or bioactive indole alkaloids (Liu et al., 2012, 2013). Until now, however, research on the chemical constituents in fruits of this plant has not been reported. As an extension of a search for bioactive indole alkaloids from the Apocynaceae (Fu et al., 2014; Guo et al., 2012a,b; Wang et al., 2011; Zhou et al., 2010), seven new compounds (1-7) (Fig. 1), including two new bisindole alkaloids, five new monomers, and a new natural product (8) (Fahn et al., 1990), together with 13 known alkaloids, namely 168,218-epoxy-vincadine (Cai et al., 2012), lochnerinine (Baassou et al., 1978; Moza et al., 1964), lochnericine (Kunesch et al., 1980), 16-epi- Δ^{14} -vincamine (Thissen et al., 2002; Li et al., 1989), (-)-vincapusine (Moldvai et al., 2006), Δ^{14} -vincamine (Bernauer et al., 1969), scandine (Achenbach et al., 1997), tabersonine-N-oxide (Wenkert et al., 1973), tabersonine (Wenkert et al., 1973), 3-oxo-tabersonine (Achenbach et al., 1997), 3-oxopachysiphine (Torrenegra et al., 1988), 3α -acetonyltabersonine (Fahn et al., 1990), and 11-

http://dx.doi.org/10.1016/j.phytochem.2015.02.028 0031-9422/© 2015 Elsevier Ltd. All rights reserved. methoxytabersonine (Kuehne et al., 1987; Pyuskyulev et al., 1967), were isolated from the fruits of *M. cochinchinensis*. Herein the isolation, structural elucidation, and the cytotoxicity evaluation were carried out in this present report.

2. Results and discussion

Compound 1 (melosine A) was isolated as a white powder. Its molecular formula was established as C₄₂H₄₂N₄O₆ by HREIMS (m/ z 698.3116, [M]⁺, calcd for C₄₂H₄₂N₄O₆ 698.3104), indicating 24 degrees of unsaturation. Its IR spectrum suggested the presence of amino (3446 cm⁻¹) and carbonyl (1670 cm⁻¹) functionalities. Its ¹H NMR spectrum indicated presence of two OCH₃ groups at δ_{H} 3.78 (6H, s) and two triplet methyls at δ_{H} 0.73 (H-18′, t, J = 7.2 Hz) and δ_{H} 0.82 (H-18, t, J = 7.2 Hz). The ¹³C NMR and DEPT data displayed 42 carbon signals, which were classified as four methyls, six methylenes, 16 methines, and 16 quaternary carbons, respectively. Among them, 12 aryl carbons and six quaternary carbons (δ_C 90.3, 93.6, 160.1, 168.8, 169.0, and 169.9) were typical of two β -anilinoacrylate moieties (Fu et al., 2014). According to the analysis of its 2D NMR spectroscopic data (HSQC, HMBC, and ¹H-¹H COSY) as shown in Fig. 2, compound 1 was established as a bisindole alkaloid with two aspidospermine skeletons.

In unit A, two olefinic protons at $\delta_{\rm H}$ 6.07 (1H, d, J = 10.0 Hz) and $\delta_{\rm H}$ 6.83 (1H, d, J = 10.0 Hz) were assigned to the double bond at C-14/15 of the α , β -unsaturated ketone. The remaining olefinic proton at $\delta_{\rm H}$ 7.34 (1H, s) was ascribed to one trisubstituted double bond connected to N-4 and C-7, which was confirmed by analysis of

^a School of Pharmacy, Yunnan University of TCM, Kunming 650500, China

b State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

^{*} Corresponding authors at: School of Pharmacy, Yunnan University of TCM, 1076 Yuhua Road, Chenggong, Kunming 650500, China (H.P. He). Tel.: +86 871 65918227; fax: +86 871 65918232.

E-mail addresses: tempzhao@126.com (Q. Zhao), hehongping@mail.kib.ac.cn, hehongping@yahoo.com (H.-P. He).

S. Shao et al./Phytochemistry xxx (2015) xxx-xxx

COOCH₃

$$18^{1} \cdot 17^{16} \cdot 27^{1} \cdot 13^{1} \cdot 12^{1} \cdot 10^{1} \cdot$$

Fig. 1. Structures of compounds 1-8.

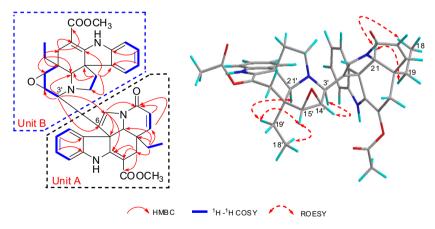


Fig. 2. Selected 2D NMR correlations for melosine A (1).

the HMBC correlations from H-5 (δ_{H} 7.34, s) to C-2 (δ_{C} 160.1), C-3 (δ_{C} 162.0), C-6 (δ_{C} 127.4), C-7 (δ_{C} 65.5), and C-21 (δ_{C} 67.6). According to these data, unit A was easy to determine as being 3-oxo-tabersonine (Achenbach et al., 1997) with a double bond between C-5 (δ_{C} 127.5) and C-6 (δ_{C} 127.4).

Two upshielded methines of C-14′ ($\delta_{\rm C}$ 58.3) and C-15′ ($\delta_{\rm C}$ 60.7) in unit B indicated the presence of an epoxy ring. In view of the remaining chemical shift patterns, unit B was characteristic of pachysiphine (Kunesch et al., 1980), this being confirmed by analysis of its 2D NMR spectra. Finally, a new linkage for bisindole alkaloids between C-6 in unit A and C-3′ in unit B was established by analysis of key HMBC correlations from H-3′ ($\delta_{\rm H}$ 3.43, J = 5.3 Hz)

to C-5 ($\delta_{\rm C}$ 127.5) and C-6 ($\delta_{\rm C}$ 127.4). The relative configuration of **1** was also determined by analysis of its ROESY spectrum as shown in Fig. 2. The α -orientation of H-21 and the ethyl group at C-20 was supported by the ROESY correlations of H-21/H-18 and H-21/H-19. Similarly, ROESY correlations of H-21/H-19′b, H-15′/H-19′, H-15′/H-18′, and H-14′/H-3′ indicated that H-3′, H-14′, H-15′, and C-20′ ethyl group were α -oriented, while the epoxy moiety was β -oriented.

The molecular formula of melosine B (2), $C_{45}H_{50}N_4O_5$, was determined by positive HRESIMS $(m/z\ 749.3673,\ [M+Na]^+$, calcd for $C_{45}H_{50}N_4O_5Na\ 749.3679$), with 23 degrees of unsaturation. The 1H NMR spectroscopic data displayed two amino protons at

Download English Version:

https://daneshyari.com/en/article/5164497

Download Persian Version:

https://daneshyari.com/article/5164497

<u>Daneshyari.com</u>