

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Anti-oxidative and anti-inflammatory activities of caffeoyl hemiterpene glycosides from *Spiraea prunifolia*

Sang Hee Park, Kwan Hee Park, Myeong Hwan Oh, Han Hyuk Kim, Kang In Choe, So Ra Kim, Kwang Jun Park, Min Won Lee*

Department of Pharmacognosy, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea

ARTICLE INFO

Article history: Received 6 March 2013 Received in revised form 15 June 2013 Available online 22 October 2013

Keywords:
Spiraea prunifolia
Rosaceae
Caffeoyl hemiterpenes
Hemiterpene glycosides
DPPH radical scavenging activity
NBT superoxide scavenging activity
NO production

ABSTRACT

Activity guided isolation of a *Spiraea prunifolia* extract yielded five caffeoyl hemiterpene glycosides: $4'-(6-O-caffeoyl-\beta-D-glucopyranosyl)-2'-methyl butyric acid, 1-O-caffeoyl-6-O-(4'-hydroxy-2'-methylene-butyroyl)-\beta-D-glucopyranoside, 1,2-O-dicaffeoyl-6-O-(4'-hydroxy-2'-methylene-butyroyl)-\beta-D-glucopyranoside, and 1-O-caffeoyl-6-O-(4'-caffeoyl-2'-methylene-butyroyl)-\beta-D-glucopyranoside, and 1-O-caffeoyl-3'-hydroxy-2'-methylene-butyroyl)-\beta-D-glucopyranoside, and nine known compounds. Structures were elucidated by analysis of 1D and 2D NMR spectra and FAB-MS. To evaluate the anti-oxidative and anti-inflammatory properties of all fourteen compounds, DPPH radical scavenging, NBT superoxide scavenging, and inhibition of nitric oxide production in LPS-stimulated RAW264.7 cells were examined. Three of the caffeoyl hemiterpene glycosides exhibited potent anti-oxidative and anti-inflammatory activities compared with Vitamin C and L-NMMA, which were used as positive controls.$

© 2013 Published by Elsevier Ltd.

1. Introduction

Spiraea prunifolia (Rosaceae), commonly called 'Bridal wreath', is widespread in northeast Asia. The young leaves, fruits, and roots of S. prunifolia have been used for the treatment of malaria, fever, and emetic conditions in traditional medicine (Choudhary et al., 2009; Oh et al., 2001; So et al., 1999a,b). Spiraea species have also been reported to contain various diterpenes, diterpene alkaloids, terpenoid glycosides, and flavonoids (Hou et al., 2009). In the present study, phytochemical isolation yielded five new caffeoyl hemiterpene glycosides (1–5), along with nine known phenolic compounds. Structures were elucidated by analysis of 1D and 2D NMR spectroscopic data. All of the isolated compounds were evaluated for anti-oxidative and anti-inflammatory properties by measuring their DPPH radical scavenging activity, NBT superoxide scavenging activity, and ability to inhibit nitric oxide production in LPS-stimulated RAW264.7 cells.

2. Results and discussion

2.1. Structure elucidation

Compound **1** had a molecular formula of $C_{20}H_{26}O_{11}$ as indicated by HR-FAB-MS data (m/z 441.1396 [M–H]⁻, Calcd. $C_{20}H_{25}O_{11}$, 441.1397). Its ¹H NMR spectrum (Table 1) was consistent with a

* Corresponding author. Tel.: +82 2 820 5602; fax: +82 2 822 9778. E-mail addresses: mwlee222@me.com, mwlee@cau.ac.kr (M.W. Lee).

caffeoyl moiety in the aromatic region as determined by the presence of an aromatic ABX-spin system with a meta-coupled aromatic signal [δ 7.05 (1H, d, J = 2.1 Hz, H-5)], ortho-coupled aromatic resonance [δ 6.77 (1H, d, J = 8.4 Hz, H-8)] and orthometa-coupled aromatic signal [δ 6.95 (1H, dd, J = 2.1, 8.4 Hz, H-9)] for a 3,4-dihydroxyphenyl unit, and two olefinic protons [δ 6.29 and 7.57 (1H, d, J = 15.9 Hz, H-2,3)] for a *trans*-configured double bond. In addition, the ¹H and ¹³C NMR spectra of **1** showed the presence of a glucopyranosyl moiety with one methylene [δ 4.32] (1H, dd, J = 6.0, 12.0 Hz, glc-6a) and 4.48 (1H, dd, J = 2.1, 12.0 Hz, glc-6b)], five methines [δ 4.29 (1H, d, J = 7.8 Hz, glc-1), 3.51 (1H, ddd, J = 9.0, 6.0, 2.4 Hz, glc-5), 3.41 (1H, t, J = 9.0 Hz, glc-3), 3.37 (1H, t, I = 9.0 Hz, glc-4), and 3.21 (1H, dd, I = 9.0, 7.8 Hz, glc-2)], and six carbons (δ 63.3, 70.3, 73.6, 74.0, 76.4 and 103.0). The large coupling constant of the anomeric proton at δ 4.28 (J = 7.8 Hz, glc-1) indicated that the glucopyranoside was in a β -configuration. The ¹H and ¹³C NMR spectra of **1** also showed the presence of a hemiterpene moiety with a single methyl group [δ 1.12 (3H, d, J = 6.6 Hz, H-5')], two methylenes [δ 1.65, 1.97 (each 1H, m, H-3') and 3.60, 3.89 (each 1H, m, H-4')], one methine [δ 2.49 (1H, m, H-2')], and five carbons (δ 16.9, 33.7, 37.9, 67.8, 181.7). The ${}^{1}H-{}^{1}H$ COSY spectrum of 1 (Fig. 2) showed a correlation of the methyl group proton signal (H-5') with the methine proton (H-2'). Further, the methine proton was also correlated with a methylene at δ 1.65/1.97 (H-3'). In addition, the two methylenes were correlated with each other. These data led to the elucidation of the hemiterpene structure as 4'-hydroxy-2'-methyl-butyrate. The connectivities of the caffeoyl,

Table 1 ¹H^a and ¹³C^b NMR spectroscopic data for compounds **1–5**.

Position	1		2		3		4		5	
	δ H (J in Hz)	δС	δ H (J in Hz)	δС	δ H (J in Hz)	δ C	δ H (J in Hz)	δС	δ H (J in Hz)	δC
Glucopyr	anosyl moiety									
1	4.29 d (7.8)	103.0	5.56 d (7.8)	94.3	5.78 d (8.4)	92.4	5.57 d (7.8)	94.2	5.56 d (7.8)	94.2
2	3.21 dd (9.0, 7.8)	73.6	3.45 dd (9.0, 7.8)	72.5	5.06 dd (9.6, 8.4)	72.6	3.45 dd (9.0, 7.8)	72.5	3.49 dd (9.0, 7.8)	72.6
3	3.41 t (9.0)	76.4	3.48 t (9.0)	76.4	3.75 t (9.6)	74.6	3.47 t (9.0)	76.5	3.58 t (9.0)	76.4
4	3.37 t (9.0)	70.3	3.41 t (9.0)	69.9	3.55 t (9.6)	70.1	3.42 t (9.0)	70.0	3.51 t (9.0)	70.0
5	3.51 ddd (9.0, 6.0, 2.4)	74.0	3.67 m	74.7	3.76 ddd (9.6, 5.4, 2.1)	74.9	3.69 ddd (9.0, 6.0, 1.8)	74.7	3.74 ddd (9.0, 6.0, 2.1)	74.6
6a	4.32 dd (12.0, 6.0)	63.3								
	4.28 dd (12.0, 5.4)	63.3	4.33 dd (12.0, 5.4)	63.1	4.32 dd (12.0, 6.0)	63.4	4.31 dd (12.0, 6.0)	63.2		
6b	4.48 dd (12.0, 2.4)		4.48 dd (12.0, 1.8)		4.52 dd (12.0, 2.1)		4.52 dd (12.0, 1.8)		4.56 dd (12.0, 2.1)	
Hemiterp	ene moiety									
1′		181.7		166.7		166.8		166.5		165.5
2'	2.49 m	37.9		137.1		137.1		136.8		140.2
3′	1.65/1.97 m	33.7	2.53 t (6.6)	34.9	2.56 t (6.6)	34.9	2.70 t (6.6)	31.4	4.81 t (4.8)	68.0
4'	3.60/3.89 m	67.8	3.66 t (6.6)	60.2	3.68 t (6.6)	60.2	4.33 m	62.4	4.28 d (4.8)	66.9
5′	1.12 d (6.6)	16.9	5.69/6.24 d (1.2)	126.7	5.71/6.27 d (1.2)	126.7	5.71/6.26 d (1.2)	127.1	6.06/6.41 br s	126.2
Caffeoyl 1	moiety									
1"		167.7		166.2		166.9		167.7		167.7
2"	6.29 d (15.9)	113.5	6.30 d (15.9)	112.8	6.28 d (15.6)	113.1	6.28 d (15.9)	113.6	6.28 d (15.6)	113.5
3"	7.57 d (15.9)	145.8	7.66 d (15.9)	147.0	7.58 d (15.6)	147.5	7.63 d (15.9)	147.0	7.63 d (15.6)	147.0
4"		126.3		126.1		126.2		126.3		126.4
5"	7.05 d (2.1)	113.8	7.06 d (1.8)	113.8	7.02 d (1.8)	113.9	7.05 d (1.8)	113.9	7.05 d (1.8)	113.9
6"		145.4		145.4		145.4		145.4		145.4
7"		148.2		148.5		148.6		148.4		148.4
8"	6.77 d (8.4)	115.1	6.78 d (8.4)	115.1	6.76 d (8.4)	115.1	6.77 d (8.1)	115.1	6.75 d (7.8)	115.1
9"	6.95 dd (8.4, 2.1)	121.5	6.97 dd (8.4, 1.8)	121.9	6.96 dd (8.4, 1.8)	122.0	6.93 dd (8.1, 1.8)	121.9	6.91 dd (7.8, 1.8)	121.9
1""						165.6		166.1		166.1
2""					6.19 d (15.6)	112.2	6.21 d (15.9)	112.9	6.25 d (15.6)	112.9
3"'					7.58 d (15.6)	146.4	7.50 d (15.9)	145.6	7.55 d (15.6)	145.8
4""						126.0		126.2		126.1
5"'					7.01 d (1.8)		7.02 d (1.8)		7.03 d (2.4)	113.8
6"'						145.3		145.3		145.3
7"'						148.3		148.1		148.1
8"'					6.75 d (8.1)		6.74 d (8.1)		6.77 d (8.4)	115.1
9"'					6.94 dd (8.1, 1.8)	121.7	6.91 dd (8.1, 1.8)	121.6	6.93 dd (8.4, 1.8)	121.6

^a NMR data were measured in CD₃OD at 600 MHz.

glucose, and hemiterpene groups were elucidated by HMBC correlation signals. The HMBC spectrum of $\bf 1$ (Fig. 2) established a correlation between the H-1 of glucose and the C-4′ of hemiterpene. The HMBC spectrum of $\bf 1$ also showed a correlation between H-6 of glucose and carbonyl C-1″ of the caffeoyl moiety. Based on these data, $\bf 1$ was determined to be $\bf 4'$ -(6- $\bf 0$ -caffeoyl- $\bf \beta$ -D-glucopyranosyl)-2′-methyl butyric acid (Fig. 1). The naturally occurring caffeoyl hemiterpene glycosides have been rarely reported – aohada-glycosides (A, B and C) from *Ilex macropoda* (Fuchino et al., 1997) and rotundarpenosides (A and B) from *Ilex rotunda* (Kim et al., 2012) and hymenosides (N, O, P and V) from *Hymenophyllum barbatum* (Toyota et al., 2002). Comparing with these, $\bf 1$ possessed different type of hemiterpene or sugar moiety.

Compound **2** had a molecular formula of $C_{20}H_{24}O_{11}$ as indicated by HR-FAB-MS data (m/z 439.1240 [M-H] $^-$, Calcd. $C_{20}H_{23}O_{11}$, 439.1240). Its 1H NMR spectrum (Table 1) was consistent with a caffeoyl moiety in the aromatic region as determined by the presence of an aromatic ABX-spin system, meta-coupled aromatic signal [δ 7.06 (1H, d, J = 1.8 Hz, H-5")], ortho-coupled aromatic resonance [δ 6.78 (1H, d, J = 8.4 Hz, H-8")] and ortho-meta-coupled aromatic signal [δ 6.97 (1H, dd, J = 1.8, 8.4 Hz, H-9")] for a 3,4-dihydroxyphenyl unit, and two olefinic protons [δ 6.30 and 7.66 (1H, d, J = 15.9 Hz, H-2",3")] for a trans-configured double bond. In addition, the 1H and ^{13}C NMR spectra of **2** indicated the presence of a glucopyranosyl moiety with one methylene [δ 4.28 (1H, dd, J = 5.4, 12.0 Hz, glc-6a) and 4.48 (1H, dd, J = 1.8, 12.0 Hz, glc-6b)], five methines [δ 5.56 (1H, d, J = 7.8 Hz, glc-1), 3.67 (1H, m, glc-5), 3.48 (1H, t, J = 9.0 Hz, glc-3), 3.45 (1H, dd, J = 9.0, 7.8 Hz, glc-2), and 3.41 (1H, t, J = 9.0 Hz, glc-

4)], and six carbons (δ 63.3, 69.9, 72.5, 74.7, 76.4 and 94.3). The large coupling constant of the anomeric proton at δ 5.56 (I = 7.8 Hz. glc-1) indicated that the glucopyranoside as in a β -configuration. The ¹H and ¹³C NMR spectra of **2** also established the presence of a hemiterpene moiety, exomethylene protons [δ 5.69 and 6.24 (each 1H, d. I = 1.2 Hz, H-5', two methylenes [$\delta 2.53 \text{ (2H, t, } I = 6.6 \text{ Hz}, \text{ H-3'}), \delta$ 3.66 (2H, t, I = 6.6 Hz, H-4')], and five carbons (δ 34.9, 60.2, 126.7, 137.1, 166.7). The HMBC spectrum of **2** (Fig. 3) showed correlations between the exomethylene proton signals (H-5') with the quaternary carbon at δ 166.7 (C-1') and the methylene carbon at δ 34.9 (C-3'). These data led to the elucidation of the hemiterpene structure as 4'-hydroxy-2'-methylene-butyrate. The connectivities of the caffeoyl, glucose, and hemiterpene groups were elucidated by HMBC correlation signals. The HMBC spectrum of 2 showed a correlation between the H-1 of glucose and carbonyl C-1" of the caffeoyl moiety. The HMBC spectrum of 2 also showed a correlation between H-6 of glucose and C-1' of the hemiterpene. Therefore, 2 was deduced as 1-O-caffeoyl-6-O-(4'-hydroxy-2'-methylene-butyroyl)-β-D-glucopyranose (Fig. 1). The hemiterpene glycoside portion of compound 2, excluding the caffeoyl moiety, was previously isolated from a Tulipa species and named 6-Tuliposide A (Christensen, 1999, 1995a,b; Christensen and Kristiansen, 1999, 1995; Tschesche et al., 1968). Thus, 2 was named 1-caffeoyl-6-tuliposide A.

Compound **3** was isolated as a pale yellow amorphous powder. Its HR-FAB-MS (m/z 601.1556 [M-H]⁻ Calcd. for $C_{29}H_{29}O_{14}$, 601.1557) indicated that the molecular formula was $C_{29}H_{30}O_{14}$. The ¹H and ¹³C NMR spectra of **3** (Table 2) were similar to those of **2** except for the presence of other signals for a caffeoyl moiety,

^b NMR data were measured in CD₃OD at 150 MHz.

Download English Version:

https://daneshyari.com/en/article/5164850

Download Persian Version:

https://daneshyari.com/article/5164850

<u>Daneshyari.com</u>