
i n t e r n a t i o n a l j o u r n a l o f m e d i c a l i n f o r m a t i c s 8 3 (2 0 1 4) 849–859

j ourna l h omepage: www.i jmi journa l .com

Evaluation of software maintainability with
openEHR – a comparison of architectures

Koray Atalaga,∗, Hong Yul Yangb, Ewan Temperoc, James R. Warrena,c

a National Institute for Health Innovation (NIHI), The University of Auckland, Auckland, New Zealand
b Ocean Informatics Pty. Ltd., Brisbane, Australia
c Department of Computer Science, The University of Auckland, Auckland, New Zealand

a r t i c l e i n f o

Article history:

Received in revised form

15 November 2013

Accepted 29 July 2014

Keywords:

Electronic health records

Software design

Standards

Software maintainability

openEHR

Archetypes

a b s t r a c t

Purpose: To assess whether it is easier to maintain a clinical information system developed

using openEHR model driven development versus mainstream methods.

Methods: A new open source application (GastrOS) has been developed following openEHR’s

multi-level modelling approach using .Net/C# based on the same requirements of an exist-

ing clinically used application developed using Microsoft Visual Basic and Access database.

Almost all the domain knowledge was embedded into the software code and data model in

the latter. The same domain knowledge has been expressed as a set of openEHR Archetypes

in GastrOS. We then introduced eight real-world change requests that had accumulated

during live clinical usage, and implemented these in both systems while measuring time

for various development tasks and change in software size for each change request.

Results: Overall it took half the time to implement changes in GastrOS. However it was the

more difficult application to modify for one change request, suggesting the nature of change

is also important. It was not possible to implement changes by modelling only. Comparison

of relative measures of time and software size change within each application highlights

how architectural differences affected maintainability across change requests.

Conclusions: The use of openEHR model driven development can result in better software

maintainability. The degree to which openEHR affects software maintainability depends on

the extent and nature of domain knowledge involved in changes. Although we used relative

measures for time and software size, confounding factors could not be totally excluded as

a controlled study design was not feasible.

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Software continues to change along the course of its life-cycle,
either due to day to day maintenance issues such as bug fixes,
or in a rather planned fashion to evolve into a more capable

∗ Corresponding author at: National Institute for Health Innovation (NIHI), The University of Auckland, Private Bag 92019, Auckland,
New Zealand. Tel.: +64 9 923 7199.

E-mail address: k.atalag@auckland.ac.nz (K. Atalag).

product. Software maintainability (‘maintainability’ from here
on), the ease with which these changes can be made, con-
stitutes the lion’s share of software development costs [1,2].
Poor maintainability may also negatively affect the reliabil-
ity of changed products and delay time to market limiting
potential business opportunities [3]. Therefore, even small

http://dx.doi.org/10.1016/j.ijmedinf.2014.07.006
1386-5056/© 2014 Elsevier Ireland Ltd. All rights reserved.

dx.doi.org/10.1016/j.ijmedinf.2014.07.006
www.ijmijournal.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmedinf.2014.07.006&domain=pdf
mailto:k.atalag@auckland.ac.nz
dx.doi.org/10.1016/j.ijmedinf.2014.07.006

850 i n t e r n a t i o n a l j o u r n a l o f m e d i c a l i n f o r m a t i c s 8 3 (2 0 1 4) 849–859

improvements in maintainability will imply significant cost
savings.

The size and complexity of the biomedical domain and
the variability of practice pose great challenges for building
and maintaining health information systems (HIS) [4]. Further-
more, rapid advances in the body of knowledge and biomedical
technology create a need to modify HIS [5–7]. Girosi et al. report
that most long term costs associated with electronic medical
record systems are due to maintenance [8].

The mainstream software development approach today is
to hardcode domain knowledge into program code and data
model. Inevitably, the resulting software has to be altered
by developers triggering the costly redevelopment cycle dur-
ing the maintenance phase [9]. In spite of notable advances
in software development technology (such as conceptual
modelling, rapid prototyping, integrated development envi-
ronments) maintenance is still a big issue, and hard-coding
domain knowledge into software seems to be a part of essence
of the problem [10].

This study leverages the existence of a deployed endo-
scopic reporting application (called GST) against which we
benchmark the maintainability as compared to a newly-
developed openEHR based application (GastrOS) developed to
the same requirements. GST had been used in a real clinical
setting between circa 1999 and 2003 at a university hospital
endoscopy unit [11]. It was developed using Microsoft Visual
Basic version 6 (VB6) and Microsoft Access 2000. The Min-
imal Standard Terminology for Digestive Endoscopy (MST)
provided most of the domain knowledge [12]. This knowl-
edge was embedded into the program code and relational
data model. During the course of its lifetime many modifica-
tions were needed to meet the changing clinical and business
requirements at the facility. However implementing these
modifications has not been easy and the cost of maintenance
became a significant barrier to its further evolution. Over an
extended period of time, and consistently, we observed that
the main source of change was related to the domain knowl-
edge.

We have selected the openEHR model driven development
approach to build a more maintainable application. The main
premise of this approach is the ability to separate clinical and
technical aspects by way of modelling. Moreover there was
outstanding community support and strong direction towards
global standardisation [13]. The modelling work using openEHR
started circa 2002 when the formalism was still in its early
stages. A few contributions were made to the formalism in
due course to faithfully represent the MST [14].

While we expected improved maintainability at the out-
set by the use of the model-driven approach there was lack of
empirical evidence to support this. The aim of this paper is to
present the comparative quantitative maintainability assess-
ment results and related qualitative findings including our
implementation methodology.

2. Background and motivation

Gastrointestinal endoscopy is a niche clinical domain with
excellent terminology standardisation. MST contains a min-
imal list of terms and structure to record the results of 99%

of routine endoscopic examinations [12]. It depicts a uni-
form hierarchy to express endoscopic findings and procedures
which constitutes the bulk of its content.

Software maintenance comprises activities needed to carry
out bug fixes, improvements or adaptation to changes in
requirements and technology. Maintainability, on the other
hand, is a quality characteristic and defined as the capability of
the software product to be modified [15]. A distinction is made
about quality from internal (design artefacts and code), exter-
nal (characteristics after building software) and in-use views
(user’s view of the quality of software) [16]. In this study we
investigated maintainability from an external view by directly
observing maintenance activities. openEHR defines a model
driven approach, called Multi Level Modelling (MLM), where
domain knowledge can be expressed in the form of Archetypes
using the Archetype Definition Language (ADL) [10]. ADL is
a compact and declarative programming language with high
expressive power focused on health information representa-
tion which can easily be understood and modified by domain
users. Considered as a formal domain specific language (DSL),
Archetypes harness the proven benefits in terms of increased
productivity and ease of maintenance [17–21]. They are used
to define healthcare concepts together with clinical context,
associated meta-data and terminology in a technology agnos-
tic way. Archetypes define all possible data items for a given
concept; hence they are maximal datasets. Reuse of the same
archetype, albeit with a different set of data items at a time,
provides consistency which is crucial for interoperability. One
level up is the openEHR Templates which can aggregate, further
constrain and annotate a set of archetypes for specific use (e.g.
a clinical document such as discharge notes, health summary,
referrals or an endoscopy report).

In MLM all data conform to simple and generic technical
buildings blocks defined in the Reference Model (RM). These are
fairly generic and stable technical artefacts used to depict cer-
tain characteristics of health information (e.g. data structures
and types) and the means to define clinical context to meet
ethical, medico-legal and provenance requirements. The RM
also defines a uniform health record structure, namely the
EHR RM, which depicts where each type of clinical information
will be added in a longitudinal record. The RM forms the first
level. In the second level archetypes bring together and con-
figure RM building blocks (e.g. defining hierarchy, optionality,
repeatability, providing default values, linking to biomedical
terminologies). Additional levels exist at terminology, openEHR
templates and presentation levels. This layering approach
helps tackle complexity and also separates clinical and tech-
nical concerns.

The motivation of our study was the existence of GST at
our disposal and the real-world maintenance experience with
which we could benchmark openEHR based software develop-
ment.

The research questions in the study are: 1) is there a dif-
ference in maintainability between GastrOS and GST? Rather
than a binary answer we are mostly interested in individual
differences across different changes if any; 2) did hard-coding
domain knowledge into the software render GST more diffi-
cult to maintain? The challenge to answering this question is
to rule out any difference due to programming language, pro-
grammer productivity and the way software is designed; 3) to

dx.doi.org/10.1016/j.ijmedinf.2014.07.006

Download English Version:

https://daneshyari.com/en/article/516495

Download Persian Version:

https://daneshyari.com/article/516495

Daneshyari.com

https://daneshyari.com/en/article/516495
https://daneshyari.com/article/516495
https://daneshyari.com

