

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from *Desmos cochinchinensis*

Santi Prasad Bajgai ^a, Vilailak Prachyawarakorn ^b, Chulabhorn Mahidol ^{a,b,c}, Somsak Ruchirawat ^{a,b,c}, Prasat Kittakoop ^{a,b,*}

- ^a Chulabhorn Graduate Institute, and the Center for Environmental Health, Toxicology and Management of Chemicals (ETM), Chemical Biology Program, Vibhavadi-Rangsit Road, Bangkok 10210, Thailand
- ^b Chulabhorn Research Institute, Vibhavadi-Rangsit Road, Bangkok 10210, Thailand
- ^c Chulabhorn Research Centre, Institute of Molecular Biosciences, Mahidol University, Thailand

ARTICLE INFO

Article history: Received 25 November 2010 Received in revised form 18 May 2011 Available online 28 July 2011

Keywords:
Desmos cochinchinensis
Annonaceae
Flavan
Chalcone
Aromatase inhibitor
Lipoxygenase inhibitor
Antioxidant activity
Cytotoxic activity
Cancer chemoprevention

ABSTRACT

Hybrid flavan-chalcones, desmosflavans A (1) and B (2), together with three known compounds, cardamonin (3), pinocembrin (4) and chrysin (5), were isolated from leaves of *Desmos cochinchinensis*. Cardamonin (3) and chrysin (5) exhibited potent antioxidant activity with 15.0 and 12.2 ORAC units. Desmosflavans A (1) and B (2), pinocembrin (4), and chrysin (5) were found to be inhibitors of aromatase with respective IC₅₀ values of 1.8, 3.3, 0.9, and 0.8 μ M. Desmosflavan A (1) inhibited lipoxygenase with the IC₅₀ value of 4.4 μ M. Desmosflavan A (1) exhibited cytotoxic activity with IC₅₀ values of 0.29–3.75 μ g/mL, while desmosflavan B (2) showed IC₅₀ values of 1.71–27.0 μ g/mL.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Plants of the genus Desmos belong to the family Annonaceae, and are distributed in south Asian countries. Some species of Desmos are used as folk medicines in China in treating malaria and rheumatism, and they are rich in flavonoids that have various biological properties such as antitumor, anti-inflammatory, antiviral and anti-HIV activities (Liao et al., 1989; Wu et al., 2003). Desmos cochinchinensis Lour. is a shrub widely distributed in Asia. Constituents in D. cochinchinensis are flavonoids (Liao et al., 1989), flavones (Wu et al., 1994), cytotoxic fatty acid (Sun et al., 1995), and cytotoxic cycloartane triterpenoids (Sun et al., 1992). D. cochinchinensis is native to Southern Thailand, and it is locally used as herbal medicine to relieve hangover symptoms after consumption of alcoholic beverages. Our preliminary screening demonstrated that a leaf extract of D. cochinchinensis (at 20 µg/mL) could inhibit 99% of an aromatase activity; this prompted us to investigate bioactive constituents of this plant. In the present study, two new hybrid flavan-chalcones (Fig. 1), namely desmosflavans A (1) and B (2), together with three known compounds, cardamonin ($\mathbf{3}$) or 2',4'-dihydroxy-6'-methoxy-chalcone, pinocembrin ($\mathbf{4}$), and chrysin ($\mathbf{5}$), were isolated from the leaves of *D. cochinchinensis*. Aromatase and lipoxygenase inhibitory, radical scavenging, antioxidant, and cytotoxic activities of the isolated compounds are also reported.

2. Results and discussion

2.1. Structural determination

Fractionation of the CH_2Cl_2 extract of *D. cochinchinensis* by Sephadex LH-20 and preparative TLC led to the isolation of two new hybrid flavan-chalcones, desmosflavans A (1) and B (2), together with three known compounds, cardamonin (3), pinocembrin (4), and chrysin (5). Known compounds 3–5 were identified by analysis of spectroscopic data and by comparison of their spectroscopic data with those reported in the literature (Diaz Napal et al., 2009; Jaipetch et al., 1982; Ma et al., 2007).

Desmosflavan A (1) was obtained as a yellow amorphous solid with the molecular formula $C_{32}H_{26}O_8$ as indicated by APCI TOF MS spectrum. The IR absorption bands at 1603 and 3194 cm⁻¹ indicated the presence of carbonyl and hydroxyl groups, respectively. The 1H NMR (600 MHz, CDCl₃) of desmosflavan A (1)

^{*} Corresponding author at: Chulabhorn Research Institute, Vibhavadi-Rangsit Road, Bangkok 10210, Thailand. Tel.: +66 86 9755777; fax: +66 2 5740622x513. E-mail address: prasat@cri.or.th (P. Kittakoop).

Fig. 1. Structure of the isolated compounds 1 and 2.

displayed signals for two mono-substituted aromatic rings, a *trans* double bond, two sp³ methines, one methylene, one aldehyde, and a methoxy group. Analysis of the ¹H NMR spectrum of **1** also indicated signals of two chelated hydroxyl protons at $\delta_{\rm H}$ 15.04 (2′-OH, D) and 12.43 (7-OH, A). A coupling constant of 15.6 Hz suggested a *trans* double bond in **1**. Analysis of the ¹³C NMR (150 MHz) and DEPT spectra also demonstrated the presence of 32 carbons in **1**, attributable to 15 sp² methine carbons (including one aldehyde),

two sp³ methines, one sp³ methylene, one sp³ methoxy, and 13 sp² non-protonated carbons, respectively. The HMBC correlations from protons (H- α and H- β) of a trans double bond to a ketone carbonyl (δ_C 193.0), H- α to C-1' (D), and H- β to C-1 (E) and C-2/C-6 (E), suggested the presence of a chalcone unit in desmosflavan A (1). The ¹H NMR signal of H-5' (D) in **1** was a singlet, implying the presence of a penta-substituted aromatic ring. The upfield shift (δ_{H} 5.91; δ_C 92.2) of H-5′ (D) was similar to that of a flavonoid or phloroglucinol, which contains a 1,3,5-trihydroxybenzene unit. The HMBC correlations from H-5' (D) to C-1', C-3', C-4', and C-6'; 6'-OMe to C-6'; and 2'-OH to C-1', C-2', and C-3', establishing substituent positions on a penta-substituted aromatic ring D in a chalcone unit in 1. The ¹H-¹H COSY spectrum of 1 established a partial structure H-2/H₂-3/H-4 of ring C. The chemical shift ($\delta_{\rm H}$ 5.25; $\delta_{\rm C}$ 76.6) of H-2 (C) suggested that it was a sp³ methine attached to an oxygen atom, and possibly linked with an electron withdrawing group due to downfield ¹H resonance (δ_H 5.25). The HMBC correlations from H-2 (C) to C-1' (B) and C-2'/ C-6' (B) indicated H-2 (C) being attached to a mono-substituted aromatic ring B. Similar to a chalcone unit, H-6 (A) was a singlet, suggesting the presence of a penta-substituted aromatic ring A, and its upfield shift ($\delta_{\rm H}$ 5.99; δ_C 96.2) again implied the presence of a 1,3,5-trihydroxybenzene unit. The HMBC correlations from H₂-3 (C) to C-10 (A); and H-4 (C) to C-9 (A) and C-10 (A) suggested H-4 (C) as being attached to an aromatic ring A. The above ¹H-¹H COSY and HMBC correlations also established that desmosflavan A (1) has a flavan unit in its molecule. The HMBC correlations from H-6 (A) to C-5, C-7, C-8,

Table 1

1H and 13C NMR spectroscopic data for compounds 1–2.

Ring or position	1 ^c		1 ^d		2 ^c	
	δ_{H} (J in Hz)	δ_{C}	$\delta_{\rm H}$ (J in Hz)	δ_{C}	δ _H (J in Hz)	δ_{C}
A/C						
2	5.25 (dd, 10.2, 2.6)	76.6	5.55 (t, 6.8)	75.9	5.12 (d, 11.4)	79.7
3	2.40 (dt, 14.3, 2.6); 2.34 (ddd, 14.3, 10.2, 5.5)	36.1	2.30 (m)	37.1	2.41 (q, 11.5); 2.53 (dd, 13.3, 7.6)	35.5
4	4.65 (dd, 5.5, 2.5)	25.6	4.74 (t, 3.9)	25.5	4.94 (t, 9.3)	26.1
5	=	163.0	-	164.3	=	163.7
6	5.99 (s)	96.2	5.94 (s)	94.0	5.98 (s)	97.4
7	_	165.2	_	163.8	= ' '	164.2
8	_	106.0	_	105.1	_	106.3 ^t
9	_	159.7	_	159.8	_	160.6
10	=	99.9	_	104.2	=	102.4
7-OH	12.43 (s)	_	12.40 (s)	_	12.22 (s)	_
8-CHO	10.19 (s)	192.0	10.18 (s)	191.2	10.14 (s)	192.0
В						
1'	-	139.9	-	141.5	=	139.4
2',6'	7.37 (m)	126.0	7.44 (m)	125.8	7.45 (m)	125.9
3',5'	7.41 (m) ^a	128.9 ^a	$7.40 (m)^{a}$	128.5 ^a	$7.40 (m)^a$	128.7
4′	7.33 (m)	128.3	7.31 (m)	127.8	7.36 (m)	128.5
D						
1'	=	106.4	-	105.4	_	106.0
2'	_	165.7	=	166.1	_	164.8
3'	=	107.6	-	110.7	_	106.8
4'	=	162.2	-	162.9	_	161.8
5'	5.91 (s)	92.2	6.16 (s)	91.3	5.94 (s)	92.6
6′	=	161.7	-	161.3	_	162.2
6'-OMe	3.91 (s)	55.9	3.95 (s)	55.3	3.89 (s)	56.0
2'-OH	15.04 (s)	_	14.91 (s)	_	15.42 (s)	-
C=0	_	193.0	=	192.4	_	193.0
α	7.90 (d, 15.6)	127.4	8.03 (d, 15.6)	127.7	7.90 (d, 15.5)	127.1
β	7.80 (d, 15.6)	142.8	7.77 (d, 15.6)	141.6	7.82 (d, 15.5)	143.4
E						
1	-	135.5	-	135.6	-	135.4
2,6	7.60 (m)	128.4	7.70 (m)	128.3	7.60 (m)	128.5
3,5	7.37 (m) ^a	128.6ª	7.40 (m) ^a	128.9 ^a	$7.40 (m)^a$	128.9
4	7.41 (m)	130.2	7.43 (m)	130.0	7.40 (m)	130.4

^{a,b} Assignment may be interchanged in the same column.

^c Acquired in CDCl₃ (600 MHz).

d Acquired in acetone- d_6 (400 MHz).

Download English Version:

https://daneshyari.com/en/article/5165533

Download Persian Version:

https://daneshyari.com/article/5165533

Daneshyari.com