
FISEVIER

Contents lists available at ScienceDirect

Phytochemistry Letters

journal homepage: www.elsevier.com/locate/phytol

Invited mini review

Butein: From ancient traditional remedy to modern nutraceutical

Ruchi Badoni Semwal, Deepak Kumar Semwal, Sandra Combrinck, Alvaro Viljoen*

Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, Gauteng, South Africa

ARTICLE INFO

Article history:
Received 13 October 2014
Received in revised form 9 December 2014
Accepted 10 December 2014
Available online 23 December 2014

Keywords: Antioxidant Anti-proliferative Apoptosis Dahlia variabilis Diabetes mellitus Polyphenol

ABSTRACT

Butein (2',3,4,4'-tetrahydroxychalcone), a simple chalcone derivative, occurs in many unrelated genera including *Butea Dahlia*, *Coreopsis* and *Searsia*. It is a reputed food additive and a common ingredient of botanicals used in herbal medicine formulations, particularly in Asian countries. Although a simple polyphenol, this molecule exhibits a range of pharmacological properties, most notably acting as a potent protein tyrosine kinase inhibitor and as an antineoplastic agent. Researchers have convincingly demonstrated that butein inhibits the epidermal growth factor receptor in HepG2 cells and the tyrosine-specific protein kinase activities of the epidermal growth factor receptor. In addition, it also exhibits promising anti-inflammatory, antidiabetic, antinephritic, antithrombin, anti-angiogenic and hepato-protective activities in various animal models. Although this molecule is endowed with an impressive list of biological properties, which have acted as scientific support for its commercialization, there are no review articles that coherently discuss various aspects of this chalcanoid. This review aims to explore the pharmacological relevance of butein, together with its structure–activity relationships and mechanisms of action. In addition, the occurrence, chemical synthesis and biosynthesis of butein are discussed.

© 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.

Contents

1.	Introd	luction	189	
2.	Tradit	tional uses	190	
3.	Chem	ical synthesis	190	
4.	Biosy	nthesis	190	
5.		Biological activities		
	5.1.	Anti-oxidant activity	190	
		Anticancer activity		
		Antihypertensive activity		
	5.4.	Antitubercular activity	195	
		Anti-HIV activity.		
	5.6.	Cardiovascular protective activities.		
	5.7.	Anti-inflammatory activity		
	5.8.	Neuroprotective activities.		
	5.9.	Hepatoprotective and antifibrogenic activities		
	5.10.	Tyrosinase inhibitory activity		
		Antinephritic activity		
		Antidiabetic and anti-lipidemic activities		

Abbreviations: ADP, adenosine diphosphate; BDE, bond dissociation energy; BHT, butylated hydroxytoluene; COX, cyclooxygenase; DPPH, diphenyl-2-picrylhydrazyl; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; HPLC, high performance liquid chromatography; HSC, hepatic stellate cells; ICAM, intercellular adhesion molecule; IL, interleukin; iNOS, inducible nitric oxide synthase; JNK, c-Jun N-terminal kinase; LPS, lipopolysaccharide; MMP, matrix metalloproteinase; NF-κB, nuclear factor-kappa B; NO, nitric oxide; Nrf2, Nuclear factor-like-2; PARP, poly(ADP-ribose) polymerase; PDGF, platelet-derived growth factor; PMA, phorbol 12-myristate 13-acetate; ROS, reactive oxygen species; STAT, transducer and activator of transcription; TGF, transforming growth factor; TNF, tumour necrosis factor; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand; VEGF, vascular endothelial growth factor.

^{*} Corresponding author. Tel.: +27 123826360; fax: +27 123826243. E-mail address: viljoenam@tut.ac.za (A. Viljoen).

6.	Toxicity studies	198
7.	Pharmacokinetic and metabolic studies	198
8.	Conclusions and future perspectives	198
	Acknowledgements	198
	References	198

1. Introduction

Butein, chemically described as 2',3,4,4'-tetrahydroxychalcone (Fig. 1), is a chalcone derivative produced by species from several diverse botanical families, including the Anacardiaceae, Asteraceae and Fabaceae. The genera *Dahlia, Butea, Searsia* and *Coreopsis* are most often used as sources for isolation purposes (Table 1). The compound was first isolated and identified in 1904 from the flowers of *Butea frondosa*, in the form of a yellow

Fig. 1. Chemical structure of butein. (A) Stable isomer; (B) less stable isomer.

colouring pigment (Perkin and Hummel, 1904). However, Perkin and Everest (1918) proposed that butein is not produced by *B. frondosa*, but rather, that it is a biotransformation product of butin that is formed during the drying or extraction of the flowers. Schmid and Seebald (1932) purified butein from flowers of *Dahlia variabilis*. Although the compound could not be identified, they reported that it was chemically distinct from apigenin, which at that stage was thought to be the only coloured substance present in the flowers of *D. variabilis*. This yellow colourant was later identified by Price (1939), who incorrectly stated that *D. variabilis* was the first identified natural source of butein.

Butein is an important dietary polyphenol. It has been recognised for its ability to inhibit the enzyme protein tyrosine kinase (Yang et al., 1998), thereby preventing phosphorylation and affording protection against some cancers and inflammatory diseases (Samoszuk et al., 2005). It has promising chemopreventive and chemotherapeutic potential (Orlikova et al., 2011). Butein is a popular ingredient of various herbal drug formulations and is widely used as a neutraceutical, particularly in Asian countries (Dan and Gamble, 1993). The compound displays inhibitory effects

 Table 1

 Occurrence of butein in various plant species from different families.

Family	Plant	Part	Reference
Adoxaceae	Viburnum propinquum Hemsl.	Leaves	Wang et al. (2009a)
Anacardiaceae	Cotinus coggygria Scop.	Heartwood	Antal et al. (2010), Valianou et al. (2009)
	Searsia verniciflua Stokes Syn.	Stem bark	Lee et al. (2002), Jeon et al. (2006)
	Toxicodendron vernicifluum (Stokes) FA Barkley	Stem bark	Lee et al. (2002), Jeon et al. (2006)
	Semecarpus anacardium L.	Stem bark	Pandey et al. (2007)
Asparagaceae	Sansevieria liberica Ger. and Labr.	Rhizomes	Ikewuchi et al. (2011)
Asteraceae	Bidens bipinnata L.	Flowers	Kwon et al. (2009)
	Bidens pilosa L.	Whole plant	Tian et al. (2011)
	Bidens tripartita L.	Whole plant	Serbin et al. (1974)
	Coreopsis douglasii (DC.) HM Hall	Flowers	Geissman (1941a)
	Coreopsis gigantean (Kellogg) HM Hall	Flowers	Geissman (1941b)
	Coreopsis maritime (Nutt.) Hook. f.	Flowers	Geissman et al. (1956)
	Coreopsis petrophiloides BL Rob. & Greenm.	Flowers	Crawford (1978)
	Coreopsis lanceolata L.	Flowers	Shimokoriyama and Hattori (1953)
	Cosmos sulphurous Cav.	Flowers	Geissman (1942)
	Dahlia variabilis Desf.	Flowers	Schmid and Seebald (1932)
	Dahlia coccinea Cav.	Petals	Harborne et al. (1990)
	Vernonia anthelmintica Willd.	Seeds	Tian et al. (2004)
Fabaceae	Acacia pycnatha Benth.	Heartwood	Roux and Paulus (1961)
	Adenanthera pavonina L.	Wood	Gennaro et al. (1972)
	Bauhinia purpurea L.	Seeds	Bhartiya et al. (1979)
	Butea frondosa Roxb.	Flowers	Perkin and Hummel (1904)
	•		Murti and Seshadri (1940)
	Butea monosperma (Lam.) Taub.	Flowers	Lau et al. (2010)
	Caragana intermedia Kuang & HC Fu Syn.	Whole plant	Shi et al. (2003)
	Caragana korshinskii Kom.	•	
	Cyclopia subternata Vogel Syn.	Seeds	De Nysschen et al. (1998)
	Cyclopia falcata (Harv.) Kies		
	Dalbergia odorifera TC Chen	Heartwood	Yu et al. (1995), Liu et al. (2005)
	Dipteryx lacunifera Ducke	Fruits	Junior et al. (2008)
	Millettia nitida var. hirsutissima Z. Wei	Stems	Liao et al. (2013)
	Millettia speciosa Champ.	Roots	Wang et al. (2008)
	Sophora alopecuroides L.	Whole plant	Wang and Ma (2009)
	Vicia faba L.	Fruits	Tomas-Barberan et al. (1991)
Pinaceae	Abies pindrow Royle ex D. Don	Stems	Tiwari and Minocha (1980)
Rubiaceae	Hydnophytum formicarum Jack.	Tubers	Prachayasittikul et al. (2008)
Schisandraceae	Schisandra propingua (Wall.) Baill	Whole plant	Wu et al. (2010)
Solanaceae	Solanum lycopersicum Lam.	Fruits	Schijlen et al. (2006)

Download English Version:

https://daneshyari.com/en/article/5176106

Download Persian Version:

https://daneshyari.com/article/5176106

<u>Daneshyari.com</u>