
ELSEVIER

Contents lists available at ScienceDirect

Phytochemistry Letters

journal homepage: www.elsevier.com/locate/phytol

Naturally occurring prenylated coumarins from *Micromelum* integerrimum twigs

Wong Phakhodee a,*, Mookda Pattarawarapan , Preetiya Pongparn b, Surat Laphookhieo b

- ^a Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- ^b Natural Products Research Laboratory, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand

ARTICLE INFO

Article history:
Received 19 September 2013
Received in revised form 20 November 2013
Accepted 21 November 2013
Available online 12 December 2013

Keywords: Rutaceae Micromelum integerrimum Prenylated coumarin

ABSTRACT

A phytochemical investigation of secondary metabolites from *Micromelum integerrimum* was reported. Two new prenylated coumarins named as hydramicromelin D (1) and integerrimelin (2) were isolated along with 9 known coumarin derivatives. The chemical structures as well as relative stereochemistries of those coumarins were confirmed on the basis of extensive spectroscopic data interpretation and comparison with those previously published data.

© 2013 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.

1. Introduction

A number of naturally occurring coumarins and prenylated coumarins have been continuously isolated from plants, particularly from the Apiaceae and Rutaceae families, Micromelum genus is classified as one of the 148 genera in Rutaceae family and it comprises about 21 species. Micromelum integerrimum, wildly distributed in South and Southeast Asia, is one of the species in Micromelum genus. Previous phytochemical investigations of M. integerrimum and its genus revealed that the secondary metabolites are highly diversified. Apart from acridone and carbazole alkaloids, a variety of coumarin derivatives, especially 6,7-di and 7,8-disubstituted coumarin core structures having at least a prenyl unit have been isolated (Cassady et al., 1979; Das et al., 1984; He et al., 2001; Ito et al., 2000; Kamperdick et al., 1999; Lekphrom et al., 2011; Luo et al., 2009b; Rahmani et al., 1994). Interestingly, naturally occurring coumarin derivatives derived from Micromelum exhibited a variety of biological activities including anticorpulence, cytotoxicity (Hirata et al., 2009), anti-platelet (Chen et al., 2003), and anti-mutagenicity (Nakahara et al., 2002). In term of searching for newly unique structure and on continuation of our interest in the chemistry of Micromelum genus, the chemical investigation of secondary metabolites from M. integerrimum was described. Two new coumarins with different oxidative cyclized isoprene unit together with 9 known coumarins were reported herein.

2. Results and discussion

Hydramicromelin D (1), integerrimelin (2) (Fig. 1) and nine known coumarin derivatives including hydramicromelin A (He et al., 2001), hydroxy-8-(2',3'-dihydroxy-3'-methylbutyl)-coumarin (Ceccherelli et al., 1989), tortuoside (Ceccherelli et al., 1989), isoscopoletin (Shafizadeh and Melnikoff, 1970), integerriminol (Phakhodee et al., 2013), micromelin (Cassady et al., 1979), murragatin (Talapatra et al., 1973), minumicromelin acetonide (Ito et al., 1990), and murralogin (Talapatra et al., 1973) were isolated from *M. integerrimum*. The structural determination of these compounds was derived by intensive interpretation of spectroscopic data.

Compound **1**, $[\alpha]_D^{26}$ +59.90 (c 0.10, $(CH_3)_2CO)$, was isolated as white solid and determined to have the molecular formula $C_{15}H_{14}O_7$ based on the TOF-HRMS data (m/z 329.0639, calcd for $C_{15}H_{14}O_7$ Na 329.0632). The IR absorption peaks suggested the presence of hydroxyl group as well as two kinds of ester functionalities at 3418, 1783, and 1729 cm⁻¹, respectively. The core structure of this molecule was determined by intensive analysis of NMR spectra. The ¹H NMR signals of a typical AB system at δ_H 7.95 (d, J = 9.6 Hz, 1H), 6.27 (d, J = 9.6 Hz, 1H) and AX system at δ_H 7.69 (s, 1H), 7.04 (s, 1H) indicated a characteristic of 6,7-disubstituted coumarin nucleus (He et al., 2001; Luo et al., 2009a; Phakhodee et al., 2013). The ¹³C NMR resonances at δ_C 122.4 and 160.0 revealed that one carbon of this coumarin core structure was

^{*} Corresponding author. Tel.: +66 5394 3341x123; fax: +66 5389 2277. E-mail address: wongp2577@gmail.com (W. Phakhodee).

Fig. 1. Phytochemical structures of secondary metabolites isolated from twigs of *M. integerrimum*.

connected with carbon and another one was attached to an oxygen atom. The ¹H NMR and ¹³C NMR of an oxidized isoprenyl unit resonated at $\delta_{\rm H}$ 5.52 (d, J = 5.6 Hz, H-1')/ $\delta_{\rm C}$ 79.5, 5.01 (s, OH), 4.94 (s, OH), 4.26 (d, J = 5.6 Hz, H-2')/ δ_C 77.5 and 1.38 (s, CH₃)/ δ_C 21.1 as shown in Table 1. This unit was linked to C-6 ($\delta_{\rm C}$ 122.4) of the coumarin framework as indicated from 2J to 3J heteronuclear multiple bond connectivity (HMBC) correlations between H-1' (5.52) and the carbons at C-5 (δ_C 127.2), C-6 (δ_C 122.4), C-7 (δ_C 160.0) C-3' ($\delta_{\rm C}$ 72.4) and C-5' ($\delta_{\rm C}$ 175.6), and between H-2' and C-6 $(\delta_{\rm C}\ 122.4)$, C-1' $(\delta_{\rm C}\ 79.5)$ and C-5' $(\delta_{\rm C}\ 175.6)$ as depicted in Fig. 2. The 3J HMBC coupling of OCH₃ ($\delta_{\rm H}$ 4.02) with C-7 ($\delta_{\rm C}$ 160.0) indicated that the methoxy group was attached to C-7 of the coumarin framework. From the ¹H and ¹³C NMR spectral data described in Table 1, structure of compound 1 was deduced as an oxidative cyclized prenylated coumarin derivative similar to those of hydramicromelins A. B. and C (He et al., 2001). Nevertheless, the spin-spin coupling between H-1'and H-2' (d. I = 5.6 Hz for compound 1; d, $I = 6.6 \,\text{Hz}$ for hydramicromelin A; d, $I = 7.2 \,\text{Hz}$ for hydramicromelin B and dd, J = 2.9, 0.7 Hz and br s for hydramicromelin C) as well as the ¹³C chemical shifts at C-2', C-3', C-4' and C-5' of 1 and those for hydramicromelins A, B and C are slightly different. The ¹³C NMR data of **1** displayed signals of C-2', C-3', C-4' and C-5' at δ_C 77.5, 72.4, 21.1 and 175.6, respectively, while those corresponding carbons of hydramicromelins A, B, and C resonated at δ_C 79.4, 73.6, 22.3 and 177.6, δ_C 80.6, 76.5, 19.1 and 17.1, and $\delta_{\rm C}$ 76.9, 77.6, 19.2 and 178.5 (He et al., 2001). This result implied that compound 1 is one of the oxidative cyclized prenylated coumarin isomers. The relative stereochemistries at C-1', C-2' and C-3' of **1** were further determined by NOESY experiment in which the correlations of H-2' with H-1' and H-4' indicated that these protons were located in the same orientation as illustrated in Fig. 2. Thus, compound **1** was named as hydramicromelin D.

Compound 2 was obtained as light yellow gum with positive optical rotation ($[\alpha]_D^{26}$: +116.50, in acetone). It gave a quasimolecular ion peak [M+Na $^+$] at m/z 401.1217 (calcd for $C_{19}H_{22}O_8Na$ 401.1212) corresponding to the molecular formula $C_{10}H_{22}O_8$, with 9 degrees of unsaturation. The IR spectra displayed absorption peaks at 3385, 1763, and 1703 cm⁻¹ corresponding to hydroxyl, α,β-unsaturated lactone, and γ-lactone functionalities. ¹H NMR of **2** showed AB system of α , β -unsaturated lactone moiety at δ_H 7.86 (d, I = 9.6 Hz, H-4), 6.16 (d, I = 9.6 Hz, H-3) similar to those ofhydramicromelin D (1). The difference is that compound 2 exhibited AB system of aromatic ring at $\delta_{\rm H}$ 7.39 (d, J = 8.8 Hz, H-5), 6.86 (d, J = 8.8 Hz, H-6) instead of AX system observed in compound 1. The ¹H NMR and ¹³C NMR revealed a typical isoprenylated unit at $\delta_{\rm H}$ 3.70 (dd, J = 10.0, 1.6 Hz, H-2')/ $\delta_{\rm C}$ 79.4 (C-2'), 3.33 (dd, J = 14.0, 1.6 Hz, H-1a') and 2.80 (dd, J = 14.0, 1.0 Hz, H- $1b')/\delta_C 25.3 (C-1')$, $1.31 (s, H-4')/\delta_C 25.0 (C-4')$, $1.29 (s, H-5')/\delta_C 24.2$ (C-5'). The γ -lactone moiety [(δ_H 4.43 (dd, J = 10.6, 4.4 Hz, H-2a") and 4.12 (d, J = 10.6, H-2b")/ δ_C 71.3 (C-2"), 4.12 (d, J = 10.6, H-1")/ δ_C 73.2 (C-1") and 1.38 (s, CH₃) was also observed. The linkage between the coumarin framework and the isoprenylated unit was confirmed based on intensive analysis of HMBC spectral data. ²I and 3J HMBC correlations between H-1a $^\prime$ ($\delta_{\rm H}$ 3.33) and C-7 ($\delta_{\rm C}$ 160.4), C-8 ($\delta_{\rm C}$ 114.5), C-8a ($\delta_{\rm C}$ 153.8) and between H-1b' ($\delta_{\rm H}$ 2.80) and C-7 (δ_C 160.4), C-8 (δ_C 114.5), C-8a (δ_C 153.8), C-2' (δ_C 79.4), C- $3'(\delta_C 71.9)$ indicated that the isoprenylated unit was located at C-8 of coumarin nucleus. The attachment of γ -lactone unit at C-3' of the isoprenylated moeity was also verified by HMBC spectrum in which correlation was observed between proton signal of H-1" ($\delta_{\rm H}$ 4.12) and carbons at C-3' (δ_C 71.9), C-3" (δ_C 177.4), C-4" (δ_C 72.1) and C-5" ($\delta_{\rm C}$ 20.7). The relative configurations of **2** were deduced by ¹H NMR and NOESY experiments. The proton signal of H-1b' at $\delta_{\rm H}$ 2.80 bearing large coupling constants of 14.0 and 10.0 Hz was assigned as geminol coupling to H-1a' and cis-vicinol coupling to H-2′, respectively. This information was further supported by the key NOESY correlations as illustrated in Fig. 2. Moreover, the relative configurations of the remaining stereogenic centres on

Table 1 1 H and 13 C NMR spectral data of compounds **1** and **2** (acetone- d_6).

Position	1		2	
	δ_{C} , mult	δ _H (J in Hz)	$\delta_{\rm C}$, mult	δ _H (<i>J</i> in Hz)
2	160.7, C	_	160.3, C	-
3	113.2, CH	6.27, d (9.6)	111.4, CH	6.16, d (9.6)
4	143.7, CH	7.95, d (9.6)	144.4, CH	7.86, d (9.6)
4a	112.1, C	-	111.9, C	_
5	127.2, CH	7.69, s	127.1, CH	7.39, d (8.8)
6	122.4, C	7.04, s	113.4, CH	6.86, d (8.8)
7	160.0, C	_	160.4, C	_
8	99.5, CH	_	114.5, C	_
8a	156.2, C	_	153.8, C	_
1'	79.5, CH	5.52, d (5.6)	25.3, CH ₂	2.80, dd (14.0, 10.0) 3.33, dd (10.0, 1.6)
2'	77.5, CH	4.26, d (5.6)	79.4, CH	3.70, dd (10.0, 1.6)
3′	72.4, C	-	71.9, C	_
4'	21.1, CH ₃	1.38, s	25.0, CH ₃	1.31, s
5′	175.6, C	_	24.2, CH ₃	1.29, s
1"	_	_	73.2, CH	4.12, d (10.6)
2"	-	_	71.3, CH ₂	4.12, d (10.6) 4.43, dd (10.6, 4.4)
3"	-	_	177.4, C	_
4"	_	_	72.1, C	_
5"	_	_	20.7, CH ₃	1.38, s
OCH ₃	56.1, CH₃	4.02, s	_	- -
OH	_	5.01	_	_
OH	_	4.94	_	_

Download English Version:

https://daneshyari.com/en/article/5176761

Download Persian Version:

https://daneshyari.com/article/5176761

<u>Daneshyari.com</u>