
Contents lists available at ScienceDirect

Phytochemistry Letters

journal homepage: www.elsevier.com/locate/phytol

New 19α -hydroxyursane-type triterpenes from the leaves of Meyna spinosa (= Vangueria spinosa), Rubiaceae

Prasenjit Rudrapaul^a, Niranjan Das^b, Utpal Chandra De^a, Biswanath Dinda^{a,c,*}

- ^a Department of Chemistry, Tripura University, Suryamaninagar 799022, Tripura, India
- ^b Department of Chemistry, Netaji Subhash Mahavidyalaya, Udaipur 799120, South Tripura, India
- ^c Department of Chemistry, National Institute of Technology, Agartala, Jirania 799055, Tripura, India

ARTICLE INFO

Article history: Received 7 October 2013 Received in revised form 7 March 2014 Accepted 25 March 2014 Available online 13 April 2014

Keywords: Meyna spinosa Vangueria spinosa Rubiaceae 19α-Hydroxyursane-type triterpenes

ABSTRACT

Two new 19α -hydroxyursane-type triterpenes, $2\alpha,3\alpha,19\alpha,24,28$ -pentahydroxyurs-12-ene (1) and meyanthic acid, 3β -acetoxy- 2β , 19α , 23-trihydroxyurs-12-en-28-oic acid (2) along with one new aliphatic ester, myricyl pentadecanoate (3) and five known compounds, 19α -hydroxyasiatic acid (4), oleanolic acid (5), myricyl alcohol (6), β -sitosterol (7) and its glycoside (8) were isolated from the methanolic leaf extract of Meyna spinosa Roxb. ex Link (= Vangueria spinosa Roxb., Rubiaceae). The structures of the new compounds were elucidated on the basis of extensive spectroscopic (including 2D) NMR) analysis and comparison with literature. Except oleanolic acid, isolation of known compounds was reported for the first time from this plant.

© 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.

1. Introduction

Mevna spinosa Roxb. ex Link (= Vangueria spinosa Roxb.. Rubiaceae), a medium sized thorny bushy shrub, is distributed in East and South India, and in neighboring countries Bangladesh, Nepal, Java, Thailand, Vietnam and Myanmar (Deb, 1983). In Assam (India), the plant is known as "Kutkura" and in Bangladesh as "Moyna". Ripe fruits have slightly sweet in taste and are eaten raw. In traditional medicine, the mature fruits are used for treatment of gastritis, cracked heels, piles, biliary and hepatic congestions (Buragohain, 2008; Yusuf et al., 2009). Leaves are used for the treatment of bone-fracture, skin irritation, abortion, diphtheria and renal diseases (Pullaiah, 2002). Previous studies on the plant reported the isolation of (-) epicatechin-3-O-β-D-glucopyranoside from leaves (Chatterjee et al., 2011), oleanolic acid from fruits (Buragohain, 2008) and saponin, 3β -O-[α -L-rhamnopyranosyl- $(1\rightarrow 2)$ β -D-xylopyranosyl]-oleanolic acid from leaves (Gogoi and Sarma, 1997). We chemically investigated the leaves of the plant and isolated two new 19 α -hydroxyursane-type triterpenes ${f 1}$ and ${f 2}$ as well as a new aliphatic ester 3 and five known compounds, 4-8 from the methanolic extract. We report in this paper, the isolation and structure elucidation of these compounds.

E-mail address: dindabtu@gmail.com (B. Dinda).

2. Results and discussion

The powdered leaves of M. spinosa were successively extracted with methanol at room temperature and the methanolic extract was fractionated into petroleum ether, chloroform, ethyl acetate and *n*-butanol fractions. Compounds **3**, **6**, **7** were isolated from the petroleum ether extract and compounds 1, 2, 4, 5 and 8 (Fig. 1) from chloroform extract after extensive silica gel column chromatography. Compounds 4 and 5 were also obtained from ethyl acetate extract.

Known compounds 4, 5, 6, 7 and 8 were identified as 19α hydroxyasiatic acid $(2\alpha,3\beta,19\alpha,23$ -tetrahydroxyurs-12-en-28-oic acid) (Gao et al., 1985), oleanolic acid (Mahato and Kundu, 1994; Maillard et al., 1992), myricyl alcohol (Dinda et al., 1999), βsitosterol (Zhang et al., 2006) and 3-O-β-p-glucopyranosyl-βsitosterol (Paulo et al., 2000), respectively, by comparison of their ¹H and ¹³C-NMR spectra and mass spectral fragmentation patterns with the reported data.

Compound 1 (Fig. 1) was obtained as colorless amorphous powder. Its molecular formula was determined as C₃₀H₅₀O₅ from the HR-FAB-MS at m/z 491.3733 [M+H]⁺ (Calcd. for $C_{30}H_{51}O_5$, 491.3737) and ¹³C-NMR spectral data. The IR spectrum showed characteristic absorptions for hydroxyl (3436 (br) cm⁻¹) and olefinic (1636 cm⁻¹) functions. The ¹H-NMR spectrum (Table 1) showed one proton singlet at $\delta_{\rm H}$ 2.68 along with five tertiary methyl singlets at $\delta_{\rm H}$ 1.05, 1.18, 1.34, 1.45 and 1.69, a secondary methyl at $\delta_{\rm H}$ 0.93 (d, I = 6.6 Hz, H₃-30) and an olefinic proton signal

^{*} Corresponding author at: Department of Chemistry, Tripura University, Suryamaninagar 799022, Tripura, India. Tel.: +91 9436502137.

Fig. 1. Structures of compounds 1-4 and 6.

at δ 5.50 (br s), characteristic of 19α -hydroxyursane typetriterpene (Jung et al., 2004). The 1 H-NMR spectrum also exhibited signals for two carbinol methines at $\delta_{\rm H}$ 4.21 (1H, ddd, J = 10.0, 5.4, 3.0 Hz) and 3.83 (1H, d, J = 3.0 Hz), assignable to H-2 β and H-3 β , respectively (Kojima and Ogura, 1989). The coupling constants 3 J_{H-1/H-2 (trans)} = 10.0 Hz, 3 J_{H-1/H-2 (cis)} = 5.4 Hz and 3 J_{H-2/H-3 (cis)} = 3.0 Hz were consistent for 2α , 3α -dihydroxyl substituents in ring A (Kojima and Ogura, 1989). Furthermore, two proton signals at $\delta_{\rm H}$ 3.72 (1H, d, J = 10.8 Hz) and 4.17 (1H, d, J = 10.8 Hz) in the 1 H-NMR

spectrum suggested the presence of a hydroxymethyl group at 23 or 24 position. The ¹³C-NMR spectrum (Table 1) showed 30 carbons including six methyl carbons (δ 16.3, 17.1, 17.8, 24.4, 25.0, 27.4) and two sp² carbons of a trisubstituted olefin at δ_C 127.2 and 138.4, one tertiary carbon at δ 73.0, two hydroxymethyl carbons at δ 65.3 and 68.1 and two methine carbons bearing a hydroxyl group at δ 68.0 and 73.8 suggesting its 19α -hydroxyurs-12-ene-type triterpenoid structure with two secondary hydroxyl groups and two hydroxymethyl groups for the compound (Cheng and Cao, 1992). The presence of carbon signals in **1** at δ_C 24.4 (CH₃) and 65.3 (CH₂) suggested the presence of hydroxyl group at C-24 position (Kojima and Ogura, 1989; Zhang and Yang, 1994). The additional two proton signals at δ_H 3.30 (1H, d, J = 10.2 Hz) and 3.62 (1H, d, J = 10.2 Hz) in its 1 H-NMR spectrum, and a methylene carbon signal at δ_{c} 68.1 suggested the presence of a hydroxymethyl group. Its location at C-28 position was assigned by HMBC correlation of H-18 with $\delta_{\rm C}$ at 68.1. The HMBC correlation of H-3 with $\delta_{\rm C}$ at 65.3 also supported the location of another hydroxymethyl group at 24-position. The ¹³C-NMR data were very similar to that of 2α , 3α , 19α , 24-tetrahydroxyurs-12-en-28-oic-28-β-p-glucopyranosylester except at C-28 (Jung et al., 2004). The NOESY correlations between H-2 and H-25; H-3 and H-24 and between H-18 and H-28 of 1 also supported the assignments of 2α , 3α , 24, 28 -hydroxyl groups in the compound. Furthermore, NOESY relations between H-18 and H-19 indicated the α -orientation of C-19 hydroxyl group. Selected NOESY correlations in 1 are shown in Fig. 2. Thus, compound 1 was determined to be 2α , 3α , 19α , 24, 28-pentahydroxyurs-12-ene (1).

Table 1 NMR spectroscopic data^a of compounds **1** and **2** (in C_5D_5N) (δ , ppm; J, Hz).

Position	1		2	
	δ_{C}	δ_{H}	δ_{C}	δ_{H}
1/CH ₂	42.4	3.11 (m), 1.25 (m)	42.9	2.31 (dd, 12.6, 4.2) 1.25 (dd, 12.6, 2.4)
2/CH	68.0	4.21 (ddd, 10.0, 5.4, 3.0)	69.2	4.27 (ddd, 4.2, 4.0, 2.4)
3/CH	73.8	3.83 (d, 3.0)	78.6	5.06 (d, 2.4)
4/C	42.8	=	42.5	=
5/CH	48.9	1.60 (m)	48.3	2.05 (m)
6/CH ₂	19.0	,	19.0	,
7/CH ₂	33.5		33.5	
8/C	40.2	_	40.8	_
9/CH	48.3	1.74 (m)	48.6	1.77 (m)
10/C	38.8		38.8	/
11/CH ₂	24.3		24.5	
12/CH	127.2	5.50 (br s)	128.3	5.60 (t-like)
13/C	138.4	-	140.3	- (t me)
14/C	42.6	_	42.5	_
15/CH ₂	27.9		29.6	
16/CH ₂	24.2	_	26.7	
17/C	48.6	_	48.2	
18/CH	54.8	2.68 (s)	54.9	3.06 (s)
19/C	73.0	_	73.0	-
20/CH	43.2		42.7	
21/CH ₂	30.3		27.3	
22/CH ₂	37.5		38.7	1.87 (br d, 11.4)
1 - 1-2	37.5		36.7	1.74(dd, 11.4, 4.2)
23/CH ₃ /CH ₂	24.4	1.69 (s)	66.6	3.74 (d, 10.2)
	2	1100 (0)	33.6	4.22 (d, 10.2)
24/CH ₂ /CH ₃	65.3	4.17 (d, 10.8)	14.7	1.43 (s)
	03.3	3.72 (d, 10.8)	1 1.7	1.13 (3)
25/CH ₃	17.8	1.05 (s)	17.7	1.11 (s)
26/CH ₃	17.1	1.18 (s)	17.6	1.09 (s)
27/CH ₃	25.0	1.45 (s)	25.0	1.15 (s)
28/CH ₂ /C	68.1	3.62 (d, 10.2)	181.0	-
20, 0112/0	00,1	3.30 (d, 10.2)	101.0	
29/CH ₃	27.4	1.34 (s)	27.4	1.67 (s)
30/CH ₃	16.3	0.93 (d, 6.6)	17.1	1.12 (d, 6.0)
19/OH	10.5	5.82 (br s)	17.1	6.29 (s)
3/OAc		3.02 (bi 3)	21.7, 170.2	2.05 (s)

^a Assignment based on HSQC, HMBC and DEPT experiments; 600 MHz for ¹H- and 150 MHz for ¹³C-NMR data.

Download English Version:

https://daneshyari.com/en/article/5176780

Download Persian Version:

https://daneshyari.com/article/5176780

<u>Daneshyari.com</u>