Contents lists available at ScienceDirect







### journal homepage: www.elsevier.com/locate/phytol

# A new triterpenoid and eremophilanolide from Ligularia przewalskii



Shi-Jun Liu<sup>a,c</sup>, Zhi-Xin Liao<sup>a,c,\*</sup>, Chao Liu<sup>a</sup>, Gui-Yang Yao<sup>a</sup>, Heng-Shan Wang<sup>b</sup>

<sup>a</sup> Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China <sup>b</sup> State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China

<sup>c</sup> Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 211189, PR China

#### ARTICLE INFO

Article history: Received 4 December 2013 Received in revised form 17 March 2014 Accepted 25 March 2014 Available online 18 April 2014

Keywords: Ligularia przewalskii (Maxim.) Diels Triterpenoid Eremophilanolide Anti-tumour activity

## ABSTRACT

A phytochemical study of the ethanolic extract of *Ligularia przewalskii* (Maxim.) Diels led to the isolation of two new terpenoids,  $(1\beta H, 3\beta H)$ -epoxy-olean-13(18)-ene-3 $\alpha$ ,2-olide (1) and 8 $\beta$ -hydroxy-(10 $\beta H$ )-14 $\beta$ -methyl-6 $\alpha$ -angeloyloxy eremophil-7(11)-en-8 $\alpha$ ,12-olide-15 $\alpha$ -oic acid (2), along with 22 known compounds (**3–24**), of which compounds **3–13** were isolated from this plant for the first time. The structures of these compounds were established on the basis of spectroscopic methods. Compounds **1–2** were evaluated for their *in vitro* anti-proliferative activities against Hep-G2 and MCF-7 tumour cell lines. Compound **1** exhibited strong inhibitory activity against Hep-G2 cell growth, in contrast to moderate cytotoxic activity against MCF-7 cells. Although compound **2** showed strong inhibitory activity against MCF-7 cells.

© 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.

## 1. Introduction

*Ligularia przewalskii* (Maxim.) Diels is a perennial herb that is for the most part abundantly distributed in Sichuan, Qinghai, Gansu, Ningxia province. It grows on floodplains, foothills, forest edges and shrublands in altitudes of 1100–3700 m (Liu, 1989). It has been used traditionally in folk medicine for the treatment of asthma, hemoptysis, hepatitis and pulmonary tuberculosis (Guo, 1987).

Previous phytochemical studies on *L. przewalskii* have revealed that it is a rich source of eremophilane sesquiterpenes (Xu and Hu, 2008; Zhao et al., 1995) and furan derivatives (Jia and Zhao, 1994). To ascertain its chemical composition and medicinal value, the ethanol extract of *L. przewalskii* was investigated. Twenty-four compounds were isolated and identified as follows: (1 $\beta$ H,3 $\beta$ H)-epoxy-olean-13(18)-ene-3 $\alpha$ ,2-olide (1); 8 $\beta$ -hydroxy-(10 $\beta$ H)-14 $\beta$ -methyl-6 $\alpha$ -angeloyloxy eremophil-7(11)-en-8 $\alpha$ ,12-olide-15 $\alpha$ -oic acid (2); genkwanin (3) (Shi et al., 2010); luteolin (4) (Miyazawa and Hisama, 2003); apigenin (5) (Zhang et al., 2011); chrysoeriol (6) (Jia et al., 1986); sitost-4-en-3-one (7) (Joshi et al., 1974);  $\beta$ -daucosterol (8); scopoletin (9) (Zolek et al., 2003); furanoeremophilan-4 $\beta$ ,6 $\alpha$ -olide

E-mail address: zxliao@seu.edu.cn (Z.-X. Liao).

side (12) (Ren and Yang, 2001); and diosmin (13) (Nieto and Gutierrez, 1986) (Fig. 1); and additionally 10\(\beta\)-hydroxy-8\(\beta\).9\(\beta\)epoxyeremophil-7(11)-en- $6\alpha$ ,15;8 $\alpha$ ,12-diolide (14) (Zhao et al., 1995); 8 $\beta$ -hydroxy-eremophil-7(11)-en-6 $\alpha$ ,15;8 $\alpha$ ,12-diolide (15) (Zhao et al., 1995); 2-acetyl-5,6-dimethoxybenzofuran (16) (Jia and Zhao, 1994); 10 $\beta$ -hydroxyeremophil-8(9),7(11)-dien-6 $\alpha$ ,15;8,12diolide (17) (Zhao et al., 1995);  $8\beta$ -hydroxy- $6\beta$ -angeloyloxy eremophil-7(11)-en-8α,12-olide-15-oic acid (18) (Zhao et al., 1995);  $\beta$ -sitosterol (19); eremophil-7(11)-en-6 $\alpha$ ,15 $\beta$ ;8 $\alpha$ ,12-diolide (**20**) (Zhao et al., 1995); eremophil-8(9),7(11)-dien-6α,15;8,12diolide (21) (Zhao et al., 1995); 2-propenyl-5-acetyl-7-hydroxy-2,3dihydrobenzofuran (7-hydroxtremetone) (22) (Jia and Zhao, 1994); euparin (23) (Bohlmann et al., 1977); 8β-methoxyeremophil-7(11)en- $6\alpha$ , 15;  $8\alpha$ , 12-diolide (24) (Zhao et al., 1995). Among the isolates, compounds **1** and **2** were discovered to be new natural terpenoids. The structures were determined mainly on the basis of various spectroscopic evidence including 1D and 2D NMR, HRESIMS and IR data. The anti-tumour activities of compounds 1-2 were evaluated in vitro. Compound 1 exhibited cytotoxic activity against MCF-7 and Hep-G2 cell lines with IC<sub>50</sub> values of 42.9 and 15.0  $\mu$ M, respectively. Compound **2** showed cytotoxic activity against MCF-7 and Hep-G2 cell lines with IC<sub>50</sub> values of 25.9 and 43.5 µM, respectively. Compound 1 showed strong inhibitory activity against Hep-G2 cell growth, and compound 2 showed strong inhibitory activity against

(**10**) (Moriyama and Takahashi, 1976); 5,6-dimethoxy-2-isopropenyl-benzofuran (**11**) (Murae et al., 1968): luteolin-7-Ο-β-ρ-gluco-

http://dx.doi.org/10.1016/j.phytol.2014.03.014

1874-3900/© 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.

<sup>\*</sup> Corresponding author at: Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China. Tel.: +86 25 52090620; fax: +86 25 52090618.



Fig. 1. Chemical structures of compounds 1–13.

MCF-7 cell growth. Cisplatin was used as positive control. Herein, the isolation and structural elucidation of the two terpenoids will be described.

featuring a lactone and an epoxy group. The proton and carbon signals of **1** are shown in Table 1.

In the HMBC spectrum (Fig. 2), the carbon resonance at  $\delta$  133.5 showed an HMBC correlation with H-27, and another HMBC

## 2. Results and discussion

The petroleum ether soluble fraction, ethyl acetate soluble fraction and n-BuOH soluble fraction of the EtOH-H<sub>2</sub>O (95:5) extract of the whole parts of *L. przewalskii* were submitted to multiple chromatographic steps to afford compounds **1–24**. The two new terpenoids were identified by means of IR, HRESIMS and NMR spectroscopy (<sup>1</sup>H NMR, <sup>13</sup>C NMR, HSQC, HMBC and ROESY).

Compound **1** was obtained as a white powder (mp: 256–257 °C,  $[\alpha]_D^{20} = -18.4$  (c = 1.00, CHCl<sub>3</sub>)). The molecular formula was deduced to be  $C_{30}H_{46}O_3$  based on the <sup>1</sup>H and <sup>13</sup>C NMR data and the quasi-molecular ion peak at m/z 477.3327 ([M+Na]<sup>+</sup>, calc. 477.3345) in the HR-ESI-MS. The assignment was confirmed with the aid of 2D NMR (HSQC, HMBC and ROESY) spectra.

There were eight signals corresponding to methyl groups ( $\delta$ 1.22, 1.18, 1.01, 0.99, 0.94, 0.92, 0.90 and 0.70) in the <sup>1</sup>H NMR spectrum and 30 carbon signals in <sup>13</sup>C NMR spectrum, which suggested that compound **1** was a triterpenoid. The IR spectrum exhibited an intense absorption band at 1795 cm<sup>-1</sup>, which was ascribed to the carbonyl group of a  $\gamma$ -lactone, of which an ether linkage to the oxygen is implied, as no other carbonyl or hydroxyl was detected in the IR spectrum. In the <sup>1</sup>H NMR spectrum two singlets were observed at  $\delta$  4.05 and  $\delta$  5.32, the only signals attributable to protons attached to the oxygen-bearing carbon atoms. The above substitution pattern could only correspond to the A ring of a triterpene skeleton (Aimi et al., 1981). Moreover, a tetrasubstituted double bond at  $\delta$  133.5 and 133.9 was indicated in the structure. The lack of a proton signal corresponding with the carbon signal at  $\delta$  172.2 further validated compound **1** as a lactonecontaining structure. The proton signal at  $\delta$  5.32 (s, 1H) together with the carbon signal at  $\delta$  110.9 revealed that this carbon was connected to two oxygens (Basnet et al., 1994). The proton signal at  $\delta$  4.05 (s, 1H) together with the carbon signal at  $\delta$  78.7 revealed this carbon was connected to one oxygen and one carbonyl group (Basnet et al., 1994). The proposed arrangement was preferred on the basis of a comparison of physico-chemical data with the only reported structurally related oleanane triterpene, thysanolactone (Aimi et al., 1981). These data revealed that the compound was a triterpenoid with an olean-13(18)-ene skeleton, additionally

# Table 1

 $^1\text{H}$  (500 MHz) and  $^{13}\text{C}$  (75 MHz) NMR data of compound 1 (in CDCl\_3 at 30  $^\circ\text{C};$   $\delta$  in ppm).

| Position | 1                          |              |
|----------|----------------------------|--------------|
|          | $\delta_{\rm H}$ (J in Hz) | $\delta_{C}$ |
| 1        | 4.05 s                     | 78.7         |
| 2        |                            | 172.2        |
| 3        | 5.32 s                     | 110.9        |
| 4        |                            | 36.4         |
| 5        | 1.37 m                     | 48.8         |
| 6a       | 1.39 m                     | 17.6         |
| 6b       | 1.44 m                     |              |
| 7a       | 1.47 m                     | 34.5         |
| 7b       | 1.52 m                     |              |
| 8        |                            | 41.1         |
| 9        | 2.12 m                     | 41.0         |
| 10       |                            | 40.1         |
| 11a      | 1.48 m                     | 22.1         |
| 11b      | 1.49 m                     |              |
| 12a      | 1.96 m                     | 24.2         |
| 12b      | 2.64 m                     |              |
| 13       |                            | 133.5        |
| 14       |                            | 45.2         |
| 15a      | 1.04 m                     | 26.4         |
| 15b      | 1.72 m                     |              |
| 16a      | 1.30 m                     | 39.3         |
| 16b      | 1.34 m                     |              |
| 17       |                            | 34.6         |
| 18       |                            | 133.9        |
| 19a      | 1.64 m                     | 38.7         |
| 19b      | 2.24 m                     |              |
| 20       |                            | 33.3         |
| 21a      | 1.12 m                     | 35.4         |
| 21b      | 1.43 m                     |              |
| 22a      | 1.31 m                     | 36.4         |
| 22b      | 1.34 m                     |              |
| 23       | 0.99 s                     | 19.3         |
| 24       | 0.92 s                     | 24.3         |
| 25       | 1.22 s                     | 15.0         |
| 26       | 0.90 s                     | 18.1         |
| 27       | 1.18 s                     | 21.3         |
| 28       | 1.01 s                     | 23.8         |
| 29       | 0.94 s                     | 32.3         |
| 30       | 0.70 s                     | 24.0         |

Download English Version:

https://daneshyari.com/en/article/5176781

Download Persian Version:

https://daneshyari.com/article/5176781

Daneshyari.com