Contents lists available at ScienceDirect

Phytochemistry Letters

journal homepage: www.elsevier.com/locate/phytol

Isopimaranes and eremophilanes from the wood-decay fungus *Xylaria allantoidea* BCC 23163

Masahiko Isaka^{*}, Arunrat Yangchum, Sumalee Supothina, Rungtiwa Chanthaket, Prasert Srikitikulchai

National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand

ARTICLE INFO

Article history: Received 1 October 2013 Received in revised form 12 October 2013 Accepted 28 January 2014 Available online 14 February 2014

Keywords: Xylaria allantoidea Isopimarane Eremophilane Cytotoxicity Antimalarial activity

ABSTRACT

Three new isopimarane diterpenes, xylallantins A–C (1–3), a new eremophilane sesquiterpene, eremoxylarin C (7), and an O-methyl derivative of diplosporin (10), together with seven known compounds, xylarenolide (4), hymatoxins E (5) and K (6), eremoxylarin A (8), 07H239-A (9), acuminatopyrone (11), and coriloxin (12), were isolated from the fermentation broth of the wood-decay fungus *Xylaria allantoidea* BCC 23163. The structures were elucidated by analyses of NMR spectroscopic and mass spectrometry data. Xylallantin A (1) showed cytotoxicity to NCI-H187 cells (IC₅₀ 17 µg/ml), while eremoxylarin C (7) exhibited activity against *Plasmodium falciparum* K1 (IC₅₀ 3.1 µg/ml) and cytotoxicity to NCI-H187 cells (IC₅₀ 6.7 µg/ml).

© 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.

1. Introduction

Xylaria is a diverse genus of plant-associated fungi, which is composed of more than 600 described species. This genus has been the source of a wide range of bioactive compounds such as cytochalasins (Abate et al., 1997), eremophilane sesquiterpenoids (Singh et al., 1999; Smith et al., 2002; McDonald et al., 2004), pimarane diterpenoids (Borgschulte et al., 1991; Isaka et al., 2011), triterpenoid glycosides (Deyrup et al., 2007), xyloketals (Lin et al., 2001), lactones (Boonphong et al., 2001), and cyclopeptides (Wu et al., 2011). However, many rare species in this genus remain underexplored. As part of our research program on bioactive fungal metabolites, a saprobic fungus Xylaria allantoidea BCC 23163 was investigated. There has been no previous chemical evaluation of this species to date. A culture broth extract showed cytotoxicity to NCI-H187 cancer cells (IC₅₀ 39 μ g/ml) and displayed a unique ¹H NMR spectroscopic profile suggesting the presence of several terpenoid metabolites. Scale-up fermentations and chemical studies led to the isolation and characterization of three new isopimarane diterpenes, xylallantins A-C (1-3), a new eremophilane sesquiterpene, eremoxylarin C(7), and an O-methyl derivative of diplosporin (10). Seven known compounds, xylarenolide (4) (Li et al., 2010), hymatoxin E (5) (Borgschulte et al., 1991), hymatoxin K (**6**) (Jossang et al., 1995), eremoxylarin A (**8**) (Shiono and Murayama, 2005), 07H239-A (**9**) (McDonald et al., 2004), acuminatopyrone (**11**) (Visconti et al., 1994), and coriloxin (**12**) (Shiono et al., 2005), were also isolated from the same culture broth extract (Fig. 1).

2. Results and discussion

Xylallantin A (1) was isolated as a minor diterpene constituent of the broth extract. The molecular formula of 1 was determined to be C₂₀H₃₀O₆ by HRESIMS. The IR spectrum exhibited intense and broad absorption band at $\nu_{max} \ 3328 \ cm^{-1}$, which suggested the presence of OH groups. The ¹H and ¹³C NMR, DEPT135, and HMQC spectroscopic data revealed that 1 contained a trisubstituted olefin $(\delta_{\rm C} \ 137.0; \ \delta_{\rm C} \ 130.3, \ \delta_{\rm H} \ 5.79)$, a vinyl group $(\delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 148.5, \ \delta_{\rm H} \ 5.86; \ \delta_{\rm C} \ 5.8$ 109.9, $\delta_{\rm H}$ 5.01 and 4.92), an acetal carbon ($\delta_{\rm C}$ 107.7), an oxygenated quaternary carbon ($\delta_{\rm C}$ 75.4), three oxygenated methines, an oxymethylene, three guaternary carbons, a methine, three methylenes, and three methyl groups. The planar structure was deduced on the basis of COSY and HMBC correlations (Table 1). Thus, two methyl groups at $\delta_{\rm H}$ 1.34 ($\delta_{\rm C}$ 28.0, CH₃-18) and 1.27 ($\delta_{\rm C}$ 23.3, CH₃-19) showed HMBC correlations to each other. These protons (H₃-18 and H₃-19) also exhibited correlations to a quaternary carbon at δ_{C} 36.3 (C-4), a secondary alcohol carbon at $\delta_{\rm C}$ 77.8 ($\delta_{\rm H}$ 3.52, CH-3), and a methine carbon at $\delta_{\rm C}$ 42.6 ($\delta_{\rm H}$ 2.75, s, CH-5). H-5 exhibited HMBC correlations to C-1, C-4, C-6, C-9, C-10, C-18, C-19, and C-20, while diastereotopic oxymethylene

^{*} Corresponding author. Tel.: +66 25646700x3554; fax: +66 25646707. *E-mail address:* isaka@biotec.or.th (M. Isaka).

^{1874-3900/\$ -} see front matter © 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.phytol.2014.01.011

Fig. 1. Structures of compounds 1–12.

protons at $\delta_{\rm H}$ 3.57 (d, J = 9.0 Hz; H_a-20) and 3.34 (d, J = 9.0 Hz; H_b-20) showed correlations to C-1, C-5, C-6, C-9, and C-10. The presence of a hemiacetal (C-6) was revealed by the HMBC correlations from 6-OH ($\delta_{\rm H}$ 4.81, s) to C-5, C-6, and C-7. Another tertiary alcohol at $\delta_{\rm H}$ 4.51 (9-OH) showed HMBC correlations to C-8, C-9, and C-10. The trisubstituted olefin was assigned to

Table 1	
---------	--

NMR	spectroscopi	c data	for xylalla	antin A	(1)	in acetone-d ₆
-----	--------------	--------	-------------	---------	-----	---------------------------

No.	$\delta_{\rm C}$, mult.	$\delta_{\rm H}$, mult. (J in Hz)	HMBC
1	69.0, CH	4.07, m	
2	30.4, CH ₂	α 1.93, m; β 2.24, m	
3	77.8, CH	3.52, m	
4	36.3, qC		
5	42.6, CH	2.75, s	1, 4, 6, 9, 10, 18, 19, 20
6	107.7, qC		
7	76.0, CH	4.09, d (10.0)	
8	137.0, qC		
9	75.4, qC		
10	54.6, qC		
11	27.6, CH ₂	lpha 1.94, m; eta 1.96, m	
12	30.1, CH ₂	lpha 1.97, m; eta 1.44, m	
13	37.5, qC		
14	130.3, CH	5.79, m	9, 12, 15
15	148.5, CH	5.86, dd (17.5, 10.6)	13, 14, 17
16	109.9, CH ₂	5.01, dd (17.5, 1.2)	13, 15
		4.92, dd (10.6, 1.2)	13, 15
17	23.5, CH ₃	1.06, s	12, 13, 14, 15
18	28.0, CH ₃	1.34, s	3, 4, 5, 19
19	23.3, CH ₃	1.27, s	3, 4, 5, 18
20	69.3, CH ₂	3.57, d (9.0); 3.34, d (9.0)	1, 5, 6, 9, 10
1-0H		5.70, d (6.8)	1, 2
3-0H		5.12, d (5.5)	2
6-0H		4.81, s	5, 6, 7
7-0H		4.02, d (10.0)	
9-0H		4.51, s	8, 9, 10

C-8/C-14 based on the HMBC correlations from the olefinic methine H-14 to C-9, C-12, and C-15. HMBC correlations from H₃-17 to C-12, C-13, C-14, and C-15, and the correlations from H-15 to C-13, C-14, and C-17 revealed the connections of the methyl group (CH₃-17) and the vinyl group to the quaternary carbon C-13. The relative configuration was elucidated on the basis of the NOESY correlations (Fig. 2). One of the oxymethylene protons, $H_a\mathchar`-20~(\delta_H~3.57)$ showed NOESY correlations to $H_B\mathchar`-3$ and $H_3\mathchar`-19.$ Other key NOESY correlations on the $\beta\text{-face}$ are those from $H_\beta\text{--}11$ to H_b -20 (δ_H 3.34) and H_3 -17. NOESY correlations H-5/H-7 and H-5/9-OH indicated the 7 β -hydroxy and 9 α -hydroxy groups, respectively. H-1 resonated as a multiplet signal in the ¹H NMR spectrum. Although the coupling constants were not measurable, the spectrum indicated small J-values for H-1/H $_{\alpha}$ -2 and H-1/H $_{\beta}$ -2, suggesting an equatorial (β) orientation of H-1. Similarly, the small J-values for H-3/H_{α}-2 and H-3/H_{β}-2 suggested the equatorial (β)

Fig. 2. Key NOESY correlations for 1.

Download English Version:

https://daneshyari.com/en/article/5177002

Download Persian Version:

https://daneshyari.com/article/5177002

Daneshyari.com