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a b s t r a c t

Health social networking communities are emerging resources for translational research. We have
designed and implemented a framework called HyGen, which combines Semantic Web technologies,
graph algorithms and user profiling to discover and prioritize novel associations across disciplines. This
manuscript focuses on the key strategies developed to overcome the challenges in handling patient-
generated content in Health social networking communities. Heuristic and quantitative evaluations were
carried out in colorectal cancer. The results demonstrate the potential of our approach to bridge silos and
to identify hidden links among clinical observations, drugs, genes and diseases. In Amyotrophic Lateral
Sclerosis case studies, HyGen has identified 15 of the 20 published disease genes. Additionally, HyGen
has highlighted new candidates for future investigations, as well as a scientifically meaningful connection
between riluzole and alcohol abuse.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Health social networking communities (HSNC) are online com-
munities where users search, self-track, share and discuss health-
related information using Web2.0 technologies. Examples of popu-
lar HSNC include PatientsLikeMe.com (PLM), DailyStrength.org and
MedHelp.org. Their primary users are patients with similar medical
conditions. Content embedded in HSNC is adding a new category
and dimension of information for translational research. For exam-
ple, 5% of all Amyotrophic Lateral Sclerosis (ALS) patients in the US
are registered members of PLM [1]. The data generated by those
patients could arguably be the largest data set for ALS genotype–
phenotype research. However, few studies have been devoted to
explore the potentials and challenges in using HSNC as data
sources in translational research.

The first challenge in handling HSNC content is the consumer-
professional vocabulary gap. Vocabularies used by patients in
HSNC are consumer English. On the other hand, most biomedical
databases and tools are intended for professionals and use scien-
tific vocabularies. For example, PLM allows patients to describe
their conditions using folksonomy, a user-generated taxonomy.

Less than half of those symptoms mapped to the concepts or syn-
onyms in Unified Medical Language System (UMLS) [2].

Secondly, information in HSNC is organized and stratified by
consumers using Web2.0 tools such as collaborative filtering, tag-
ging, and voting. The data schema is derived bottom-up from the
data, thus reflecting how patients understand and categorize
biomedical knowledge. But when building traditional biological
databases, we design the schema first and then load the data.
Therefore, it is not a surprise that 62% of the symptoms submitted
by PLM patients were not ‘‘Signs or Symptoms’’ in UMLS [2].

With over 20 large HSNC websites being launched in the last
few years [3], there is an increasing need for novel tools and meth-
ods to address these challenges. We previously proposed a proto-
type for identifying hidden associations related to colorectal
cancer using information extracted from traditional biomedical
databases [4]. Based on the initial prototype, we have designed
and implemented novel strategies to overcome the challenges in
HSNC content. This manuscript presents the completed frame-
work, named HyGen, focusing on how the community-level data
in PLM is processed and utilized. In addition, it describes our quan-
titative evaluations, proposes an optimization method, and dis-
cusses the preliminary results.

2. Related work

Graph analysis has drawn much interest among bioinformatics
researchers due to the rapid growth of publicly available high
throughput data [5–12]. Such data have provided linkages among
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chemical, biological, and clinical entities, which can be modelled as
nodes and their relationships as edges (links). The graphs can then
be analyzed using conventional graph analysis technique or exten-
sion of it [11–15].

In this case, we are especially interested in applying graph algo-
rithms to rank search results. Common approaches [16–19] include
concept structure analysis, PageRank, and Hyperlink-Induced Topic
Search (HITS). PageRank with Priors proposed by White and Smyth
[20] simulates the steps of a Web surfer, who starts from any of the
root nodes on the Internet and follows a random link at each step
with b as the probability of returning to the root nodes. A score is
computed for each node on the Internet to reflect its probability of
being reached by the surfer. This score is used to measure the rel-
ative ‘‘closeness’’ of a node to the root nodes. K-Step Markov meth-
od simulates a similar Web surfing scenario as in PageRank, except
that the surfer returns to the root nodes after K steps and restarts
the process. K-Step Markov algorithm estimates the relative prob-
ability that a surfer will spend time at a node given that the surfer
starts in a set of root nodes and stops after K steps. HITS with Priors
proposed by Kleinberg measures two properties of a node: (1)
authority score estimates the importance of the node itself; and
(2) hub score measures the importance of other nodes linked to
the current node [21]. Therefore, HITS with Priors not only consid-
ers the number of links to and from a node but also its neighbours’.

Gudivada et al. have proposed a modified algorithm to rank
genes [22]. In traditional WWW ranking analyses, all links are con-
sidered equally significant. But in the context of biological net-
works, the importance of a link also depends on the nodes
connected with it. Using gene and pathway association as an
example, Gudivada explained that a gene participates in multiple
pathways is more important than a pathway that has multiple
genes since most pathways will include multiple genes. To model
this nature of biological networks, each link is assigned a subjectiv-
ity weight and an objectivity weight. Link such as ‘Gene-HasAssoci-
ated-Pathway’ is assigned a higher subjectivity weight (for gene)
and lower objectivity weight (for pathway). The only constraint
is that for each link the sum of subjectivity and objectivity weights
must be equal to 1.

Although concepts and technologies supporting semantic
ranking have been studied by many researchers mentioned above,
fewer reports have been published on applying user profiling
and sub-graphing technologies to rank multi-level and cross-
disciplinary biomedical data based on graph attributes. This ap-
proach integrates many types of nodes to discover associations
among different types of biomedical entities and to deliver the
results based on each user’s interest.

3. Methods

HyGen combines Semantic Web (SW), graph algorithm and user
profiling to discover novel associations. The discovery process has
two main steps: (1) constructing a full semantic graph using asso-
ciations extracted from heterogeneous sources; (2) subtracting a
sub graph and ranking the associations based on the criteria de-
fined by the user.

3.1. Constructing a weighted graph

Using the method proposed in [23], associations were extracted
from well-known genomic, pharmacological and proteomic dat-
abases. A summary of the compiled associations is displayed in
Table 1. Those associations were converted to nodes and edges in
the full graph, where nodes represent life science entities, such
as genes, diseases, or compounds; and edges represent the rela-
tionships between entities. Numerical weights (from 0 to 1) were

assigned to the edges based on the confidence scores of the data
sources. Users can adjust the confidence score of a source accord-
ing to their own experience and needs in the user profiles.

In the full semantic graph, the Uniform Resource Identifier (URI)
of an entity is derived from NIH authoritative identifiers, such as
EntrezGene ID or UMLS CUI. Thus, entities sharing the same URI
are merged into one node regardless of their sources, and two
nodes from different disciplines are associated if they both connect
to the same node. It is worth mentioning that even though we used
Semantic Web technologies here, the full graph can be constructed
by any other technologies as long as they allow HyGen to merge
and connect entities from diverse sources.

3.2. Converting patient-reported terms to nodes

In PLM, individual-level data is aggregated and reflected in the
community reports. We extracted the most frequently reported
(MFR) symptoms from ALS community report provided by PLM
[24]. We normalized the symptom terms against UMLS [25] using
MetaMap [26], followed by manual inspection. The top ten MFR
symptoms and the matching UMLS concepts are displayed in
Table 2. Similarly, we extracted MFR prescription drug names from
the ALS community report [27] and normalized them against com-
pounds or synonyms in CHEMLIST, a dictionary for identifying
chemical information in the literature [28].

Thus each patient-reported term was mapped to the node that
represents the same clinical concept or chemical substance in the
full graph. Mapping of instance-level data is HyGen’s key strategy
to bridge the consumer-professional vocabulary gap. Ontologies
such as UMLS, CHEMLIST and their companion linguistic tools, in
combination with SW, have made it possible to aggregate HSNC
content with data from research-oriented resources.

The other challenge mentioned previously is that more than
half of the symptoms submitted by PLM patients were not ‘‘Signs
or Symptoms’’ in UMLS. We circumvented this problem by defining
one general type called ‘‘clinical-feature’’ for concepts belonging to
multiple UMLS semantic types. The relationships between clinical-
features and other types of nodes were loosely defined (e.g. ‘‘rela-
ted_to_gene’’ and ‘‘related_to_drug’’). Obviously, the penalty of this
approach is a higher false positive rate. To compensate, we imple-
mented a pseudo relevance feedback strategy to reduce the irrele-
vant connections.

Table 1
Associations in the full graph.

Associations Count Source database

Gene and clinical
features

150,292 OMIM (www.ncbi.nlm.nih.gov)
GAD (http://geneticassociationdb.nih.
gov)
PharmGKB (www.pharmgkb.org)

Gene and gene 310,842 BioGrid (thebiogrid.org)
BIND (bond.unleashedinformatics.com)
MINT (mint.bio.uniroma2.it)
IntAct (www.ebi.ac.uk/intact)
Reactome (reactome.org)

Gene and pathway 91,771 KEGG (www.genome.jp/kegg)
Reactome (www.reactome.org)
WikiPathways
(www.wikipathways.org)
Panther (www.pantherdb.org)
PID (pid.nci.nih.gov)
GeneGo (www.genego.com)

Drug and gene 6552 DrugBank (www.drugbank.ca)
PharmGKB (www.pharmgkb.org)

Drug and clinical
features

6742 DrugBank (www.drugbank.ca)
PharmGKB (www.pharmgkb.org)
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