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a b s t r a c t

Governing equations for evolution of concentration and temperature in three-component systems were
derived in the framework of classical irreversible thermodynamics using Onsager’s variational principle
and were presented for solvent/solvent/polymer and solvent/polymer/polymer systems. The derivation
was developed from the Gibbs equation of equilibrium thermodynamics using the local equilibrium
hypothesis, Onsager reciprocal relations and Prigogine’s theorem for systems in mechanical equilibrium.
It was shown that the details of mass and heat diffusion phenomena in a ternary system are completely
expressed by a 3 � 3 matrix whose entries are mass diffusion coefficients (4 entries), thermal diffusion
coefficients (2 entries) and three entries that describe the evolution of heat in the system. The entries of
the diffusion matrix are related to the elements of Onsager matrix that are bounded by some constraints
to satisfy the positive definiteness of entropy production in the system. All the elements of diffusion
matrix were expressed in terms of derivatives of exchange chemical potentials of the components with
respect to concentration and temperature. The spinodal curves of ternary polymer solutions were
derived from the governing equations and their correctness was checked by the Hessian of free energy
density. Moreover, it was proved that setting cross-diffusion coefficients to zero results in a contradiction,
and the governing equations without cross-diffusion coefficients do not express the actual phase
behavior of the system.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Mass and heat diffusion in polymer solutions is of great
importance in the technologies related to painting, coating, inkjet
printing, plastic films and production of electronic devices [1].
Diffusion processes also play a key role in self-assembly [2] and
important areas of study in soft matter physics [3]. A proper un-
derstanding of diffusion phenomena in polymer solutions is
required in order to have a control on the processes involving
polymer solutions.

Polymer solutions commonly used for industrial purposes are
generally multi-component systems, i.e., ternary polymer solutions
of one polymer in two solvents or two polymers in one solvent [4].
Most of the experimental and theoretical studies thus far, have
been about diffusion in binary systems, and despite the broad range
of applications involve ternary polymer solutions [4e14] there is no

theoretical work that formulates thermodynamically consistent
governing equations for mass and heat diffusion in ternary polymer
solutions in a way that all the mass and thermal diffusion co-
efficients necessary to describe the transport phenomena are
derived in terms of thermodynamic variables.

By increasing the number of components in a mixture and
emergence of cross-diffusion effects, the transport phenomena
become very complex. As a result, a large number of mass diffusion
coefficients are required to describe the mass transport [2]. This
complexity will increase by adding a spatially varying temperature
field to the system, since the effect of thermal diffusion and con-
tributions of mass fluxes to the heat flow must also be considered.
Mass and heat diffusion are irreversible phenomena and they
contribute to entropy production in the system. Hence, the gov-
erning equations for mass and heat evolution in ternary polymer
solutions must be derived in the framework of classical irreversible
thermodynamics in which the balance of entropy plays a crucial
role. An overview of the governing equations formulated for mass
and heat diffusion in ternary polymer solutions indicates that these* Corresponding author.
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equations were derived without considering the balance of entropy
in the system. Vrentas et al. [15] derived governing equations for
isothermal mass diffusion in ternary polymer solutions based on a
theory due to Bearman [16]. They considered a ternary polymer
system containing one polymer and two solvents. In that system,
the concentration of solvents was much lower than that of the
polymer. They set the cross-diffusion coefficients to zero and esti-
mated the principal mass diffusion coefficients by the self-diffusion
coefficients of the solvents. Using the same approach based on the
statistical theory of Bearman [16], Shojaie et al. [17] developed a
model for non-isothermal mass diffusion in a ternary polymer so-
lution containing a polymer and two solvents. The heat transfer in
their model was described by the Fourier’s law of heat conduction.
Alsoy and Duda [18] studied the drying of ternary polymer solu-
tions using a model in which the mass diffusion coefficients were
expressed in terms of self-diffusion coefficients of the solvents. In
that model they assumed temperature to be temporally dependent
and spatially independent. Dabral et al. [4] modeled the drying
process of a ternary polymer solution as an isothermal mass
diffusion problem. Due to the lack of reliable experimental data and
the absence of a suitable predictive theory, they set the cross-
diffusion coefficients to zero. In the above-mentioned formula-
tions, there is no criterion that guarantees the governing equations
are thermodynamically consistent. An analysis of these models
developed for diffusion in multi-component systems indicates that
some of them are not consistent with the Onsager reciprocal re-
lations [19]. Moreover, in these studies, contribution of tempera-
ture gradient to mass diffusion in ternary polymer solutions was
neglected. Furthermore, the heat transfer was modeled using the
Fourier’s law of heat conduction. This formulation does not take
into account the effect of mass diffusion on the heat transfer and
the coupling between mass and heat transfer is only due to the
temperature dependency of mass diffusion coefficients.

Recently, we developed a thermodynamically consistent model
of mass and heat diffusion in binary polymer solutions [20]. In this
paper, we focus on generalization of this model to ternary polymer
solutions. Although this study aims to develop a theoretical un-
derstanding of diffusion in ternary polymer solutions, the govern-
ing equations derived herein can be used for any ternary system.
Since, the governing equations have been formulated for the gen-
eral case of non-isothermal three-component systems, the effect of
temperature gradient on the evolution of concentration of the
components was shown by derivation of thermal diffusion co-
efficients in terms of phenomenological coefficients and derivatives
of exchange chemical potentials of the components with respect to
temperature. Moreover, it was proved that cross-diffusion co-
efficients play a crucial role in expressing the phase behavior of a
ternary system and setting the cross-diffusion coefficients to zero
leads to a contradiction.

2. Theory

We consider a non-reacting ternary system in which non-
convective mass diffusion and heat conduction occur. The system
is considered to be in one phase, far from the critical region of phase
separation. We also assume the system is in mechanical equilib-
rium. The hypothesis of local equilibrium allows the fundamental
equation of classical thermodynamics to be valid for every volume
element in the system, although the whole system is not in equi-
librium [21]. Using this hypothesis and Prigogine’s theorem for
systems in mechanical equilibrium, the rate of change of entropy
per unit volume for a three-component system such as solvent/
solvent/polymer or solvent/polymer/polymer is given by (see
Appendix A)

ds
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where s, Jq, J1, J2 and T are entropy per unit volume, heat flux, mass
flux of component 1, mass flux of component 2 and absolute tem-
perature, respectively. m1,3 and m2,3 are exchange chemical poten-
tials of components 1 and 3, and 2 and 3, respectively.

Equation (1) represents the rate of change of entropy per unit
volume of the mixture in terms of divergence of entropy flux and
rate of entropy production per unit volume of the system s, which
can be presented in the bilinear form of thermodynamics forces
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and the conjugated fluxes
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As one can see due to a constraint for the fluxes, in a ternary
system the mass flux of two components are expressed explicitly in
the rate of entropy production. In effect, for a general case of an n-
component system, n�1 equation are required to describe themass
diffusion in the system.

The governing equations can be found using linear fluxeforce
relationships considering the Onsager reciprocal relations and also
they can be derived from Onsager’s variational principle [22] by
maximizing (s�j)J, the difference between rate of entropy pro-
duction in the system and a dissipation function j presented in
terms of thermodynamic forces in the system

jðX1;X2;X3Þ ¼
1
2

X3
i;k¼1

LikXiXk � 0; (3)

here Lik are phenomenological coefficients. Using linear fluxeforce
relationships, the fluxes can be written in terms of the forces as
shown in Eqs. (4)e(6) which in matrix presentationwould yield Eq.
(7)
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Entries of matrix L¼(lij)3�3 are Onsager’s coefficients and based
on Onsager’s reciprocity relations, matrix L is a symmetric matrix
[23]. In conditions for which linear fluxeforce relations are valid,
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