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A time discretization scheme based on the third-order backward difference formula has 
been embedded into a Chebyshev tau spectral method for the Navier–Stokes equations. The 
time discretization is a variant of the second-order backward scheme proposed by Krasnov 
et al. (2008) [3]. High-resolution direct numerical simulations of turbulent incompressible 
channel flow have been performed to compare the backward scheme to the Runge–
Kutta scheme proposed by Spalart et al. (1991) [2]. It is shown that the Runge–Kutta 
scheme leads to a poor convergence of some third-order spatial derivatives in the direct 
vicinity of the wall, derivatives that represent the diffusion of wall-tangential vorticity. The 
convergence at the wall is shown to be significantly improved if the backward scheme is 
applied.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In recent direct numerical simulations of turbulent channel flow with a spectral Chebyshev tau method, we noticed 
large errors in the budgets of the turbulence dissipation rate and enstrophy in the direct vicinity of the wall [1]. The time 
discretization scheme used was the Runge–Kutta method proposed by Spalart et al. [2], which is third-order accurate for the 
convective and second-order accurate for the viscous terms. Fortunately, these errors did apparently not affect the accuracy 
of quantities outside the direct vicinity of the wall, nor did they affect any mean value or standard deviation of a quantity 
based on the velocity or on spatial velocity derivatives up to order two. Nonetheless, the occurrence of these errors is 
disconcerting for a method which is regarded as one of the most accurate for direct numerical simulation of turbulent 
channel flow. The purpose of this note is to investigate this issue in more detail. It will appear that the issue is not resolved 
by spatial refinement if the time discretization method is not changed. We will therefore formulate and test an alternative 
time discretization method, which has at least the same formal order of accuracy as the Runge–Kutta method mentioned. It 
is a third-order variant of the second-order backward method proposed by Krasnov et al. [3].

2. A third-order time discretization scheme

The Chebyshev tau spectral method considered is based on the equation of the wall-normal component of the vorticity 
and the equation of the Laplacian of the wall-normal component of the velocity and has frequently been used in direct 
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numerical simulation (DNS) of turbulent channel flow [4–8,3,9–13,1]. Only the wall-normal direction is treated with the 
Chebyshev tau discretization; the periodic streamwise and spanwise directions are treated with the Fourier spectral dis-
cretization [18,19]. Although the pressure has been eliminated from the equations, this Chebyshev tau method requires, like 
pressure-based Chebyshev methods [14–17], a type of influence matrix (Green’s functions) technique for the enforcement 
of the correct wall boundary conditions.

In the first DNS of turbulent channel flow [4], this Chebyshev tau method was used in combination with the second-
order accurate Crank–Nicolson Adams–Bashforth time discretization method (CN–AB). Later on, the Runge–Kutta method 
proposed by Spalart et al. [2], referred to as RK, was often used in spectral DNS of turbulent channel flow, see for example 
Refs. [5–8,11–13,1]. Compared to CN–AB, the advantages of RK are that it is self-starting and third-order accurate for the 
convective terms. Krasnov et al. [3] and others [9,10] combined the (pressureless) Chebyshev tau method with a time dis-
cretization scheme based on the second-order backward finite difference formula. However, these references do not clarify 
why this scheme was used instead of CN–AB or RK, which is more accurate for the convective terms. Since we prefer that 
an alternative to RK is at least third-order accurate for convective terms, we will introduce a third-order variant of the 
backward scheme of Krasnov et al. [3] in the following. We call this scheme B3.

The Chebyshev tau method considered is based on the evolution equations for four primary variables, two three-
dimensional variables and two one-dimensional variables. The two three-dimensional primary variables are the wall-normal 
component of the vorticity (ω2) and the Laplacian of the wall-normal component of the velocity (φ = �u2). The two 
one-dimensional primary variables are U1 and U3, the streamwise and spanwise velocity components averaged over the 
streamwise and spanwise directions. The third-order backward discretization of the four evolution equations can be written 
in the form,

11ĝn+1 − 18ĝn + 9ĝn−1 − 2ĝn−2

6 δt
= ν L̂ ĝn+1 + F̂ g

(
ω̂∗

2, φ̂∗, Û∗
1, Û∗

3

)
, (1)

where the time-level is denoted in superscript and δt is the time-step. The symbol ĝ stands for the spectral transforms of 
ω2, φ, U1 and U2. In addition, L̂ denotes the spectral representation of the Laplace operator, ν the kinematic viscosity, and 
F̂ g denotes the nonlinear operator that expresses the non-viscous terms into the primary variables. The asterisk superscript 
indicates that the variable is extrapolated to time level n + 1 using the third-order extrapolation formula,

q̂∗ = 3q̂n − 3q̂n−1 + q̂n−2. (2)

This completes the definition of time discretization scheme B3, which is formally third-order accurate for both convective 
and viscous terms. Apart from the order of accuracy, there are two other notable differences between scheme B3 and the 
second-order backward method of Krasnov et al. [3]. Whereas in Ref. [3] the linear extrapolation operator (2) is applied to 
nonlinear terms computed from non-extrapolated primary variables, in Eq. (1) the nonlinear operator is applied to extrap-
olated primary variables. The advantage of the latter is that no storage of nonlinear terms for reuse in future time steps is 
required. The primary variables do need to be stored, but this is required anyway, due to the left-hand side of Eq. (1). The 
second difference concerns the Von Neumann stability regime. Like scheme CN–AB, the second-order backward scheme is 
unstable in the inviscid limit, which means that the scheme is unstable on the entire imaginary axis, parametrized with iy
(y is real), except if y = 0. However, scheme B3 is stable in the inviscid limit, since the stable region includes the interval 
|y| < 0.63. For comparison, the stable region of scheme RK includes the interval |y| < 1.73, almost three times larger, but 
the method is a three-stage method and therefore per time step three times as expensive as scheme B3. Due to the implicit 
treatment of the viscous terms, scheme B3 contains, like schemes CN–AB and RK, the entire left-half of the real axis.

Scheme RK is a low-storage scheme; the primary variables need only to be stored for the actual stage and the previous 
stage. In contrast, for scheme B3 the primary variables need to be stored for the actual time step and three previous 
time steps. Thus for the storage of primary variables scheme B3 requires twice as much memory as scheme RK. In our 
implementations, in which auxiliary variables are used for efficient computation of the dealiased nonlinear terms (based on 
u × ω), the total storage requirements for scheme B3 compared to scheme RK is much less higher than a factor of two.

3. Results

In the remainder of this note, we show how RK and B3 perform in high-resolution DNS of turbulent channel flow at 
Reτ = 180 (the channel half-width H and the friction velocity uτ are both equal to 1 and the kinematic viscosity ν is equal 
to 1/180). The flow is driven by a fixed mean streamwise pressure gradient. The streamwise, wall-normal and spanwise 
directions correspond to x1, x2 and x3. These directions are discretized with N1 Fourier modes, N2 + 1 Chebyshev modes 
and N3 Fourier modes, respectively. Nonlinear products are computed in physical space, with use of dealiasing in the x1 and 
x3 directions only (the grid in physical space contains 3N1/2 × (N2 + 1) × 3N3/2 points). The domain size is L × 2 × L/3. 
Statistics of the statistically steady state that will be shown have been obtained in the standard domain, L = 4π . The 
transient behaviour of the solution was studied in a smaller domain (L = 2π ). The smaller domain size made it much more 
efficient to explore a large number of discretizations, grid sizes and error quantities.

In the discussion of the results, we focus on the vorticity equation. The i-component of the vorticity equation is given 
by,

∂tωi = −u · ∇ωi + ω · ∇ui + ν�ωi, (3)
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