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a b s t r a c t

This paper aims to theoretically explain experimental observations regarding the thermal diffusion of
polymers in polymer solutions. 3D governing equations for mass and heat diffusion in polymer solutions
were derived in the framework of classical irreversible thermodynamics using local equilibrium hy-
pothesis, Onsager reciprocal relations and Prigogine's theory in systems in mechanical equilibrium. The
mutual diffusion coefficient, thermal diffusion coefficient and thermal conductivity enter the governing
equations as functions of thermodynamic variables and phenomenological coefficients that are bounded
to some theoretical constraints. It was shown that the derivative of the linear combination of chemical
potentials of polymer and solvent with respect to temperature plays an important role in thermal
diffusion in polymer solutions. Thermal diffusion coefficient derived in the model can qualitatively
explain the experimental observations in the literature regarding the dependence of thermal diffusion of
polymers to molecular weight, polymer chain rigidity and viscosity of the solvent. Numerical simulation
of the governing equations for a 1D drying process of polymer solutions indicates that the model is able
to capture the effect of thermal diffusion. This effect manifests itself as an increase in local concentration
of the solvent on the warm side of a temperature gradient during a solution casting process.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal diffusion or LudwigeSoret effect is the mass diffusion
driven by applying a temperature gradient on multi-component
systems [1]. Although during the past decade this effect in poly-
mer solutions has been studied [2e8], the physics underlying this
phenomenon is not fully understood [9]. Moreover, there is no
expression for thermal diffusion of polymers derived on a first-
principles basis to relate thermal diffusion to thermodynamic
variables.

According to recent experiments, thermal diffusion coefficient
in polymer solutions is found to be an increasing function of mo-
lecular weight for short chains while reaching a plateau at high
molecular weights [4e7]. It also has inverse dependence on the
solvent viscosity [6]. Moreover, rigid polymer chains have higher
thermal diffusion coefficients than more flexible ones [5,6,8].

The objective of this paper was to derive an equation for thermal

diffusion coefficient in polymer solutions from the fundamental
laws of thermodynamics and explain experimental observations
related to the thermal diffusion coefficient of polymers in polymer
solutions. The thermal diffusion coefficient will be derived by
developing a model to describe the evolution of mass and heat
diffusion in polymer solutions. The governing equations derived for
evolution of concentration and temperature, were used to simulate
drying process of polymer solutions as an important example of a
nonequilibrium process. Evaporation of solvent from a polymer
solution has importance in technologies related to painting,
coating, inkjet printing, manufacturing polymer films and pro-
duction of electronic devices. Apart from the vast technological
importance, it is one of the important problems of soft matter
physics. In order to have a control on this process, one should have a
good understanding of the physics underlying the problem. In most
of the studies, the process of drying of polymer solutions is
assumed to be an isothermal process which is not a reliable
assumption. As Feynman [10] mentioned in his celebrated lectures
on physics, once a liquid evaporates it gradually cools. If the mol-
ecules of vapor return to the liquid it can result in generation of
heat but if by blowing the return of vapor molecules is prevented

* Corresponding author.
E-mail address: cakmak1@uakron.edu (M. Cakmak).

Contents lists available at ScienceDirect

Polymer

journal homepage: www.elsevier .com/locate/polymer

http://dx.doi.org/10.1016/j.polymer.2015.09.068
0032-3861/© 2015 Elsevier Ltd. All rights reserved.

Polymer 79 (2015) 110e118

Delta:1_given name
Delta:1_surname
mailto:cakmak1@uakron.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.polymer.2015.09.068&domain=pdf
www.sciencedirect.com/science/journal/00323861
http://www.elsevier.com/locate/polymer
http://dx.doi.org/10.1016/j.polymer.2015.09.068
http://dx.doi.org/10.1016/j.polymer.2015.09.068
http://dx.doi.org/10.1016/j.polymer.2015.09.068


then the liquid is cooled. An immediate drawback of neglecting
temperature gradient in a polymer solution undergoing evapora-
tion of solvent is that the effect of thermal diffusion is eliminated.
This can affect the concentration profiles because the contribution
of thermal diffusion to the mass flux is missed. Therefore,
neglecting the variation of temperature cannot provide us with an
accurate picture of kinetics of drying process.

The paper is organized as follows: In the second part a model is
developed in the framework of classical irreversible thermody-
namics and 3D governing equations are derived for evolution of
concentration and temperature in polymer solutions. In the third
part the initial and boundary conditions for a simple 1D drying
process are formulated. The results of simulation and the model are
discussed in the last part.

2. Model

We consider a non-reacting multi-component mixture in which
non-convective mass diffusion and heat conduction occur. The
system is considered to be in one phase, far from the critical region
of phase separation. We also assume the system is in mechanical
equilibrium.

The hypothesis of local equilibrium allows the fundamental
equation of classical thermodynamics to be valid for every volume
element in the system, although the whole system is not in equi-
librium [1]. Using this hypothesis and Prigogine's theorem for
systems in mechanical equilibrium, the rate of change of entropy
per unit volume for a two-component system (polymer solution) is
given by (See Appendix A)

ds
dt

¼ �V$

�
Jq � mJ1

T

�
� 1
T2

VT$
�
Jq � mJ1

�
� 1
T
J1$Vm; (2.1)

where s, Jq, J1, T and m are entropy per unit volume, heat flux, solvent
mass flux, absolute temperature and linear combination of chem-
ical potential of components, respectively. It should be noticed that
time derivative in Eq. (2.1) is substantial time derivative (See
Appendix A).

We can write Eq. (2.1) in the following form

ds
dt

¼ �V$Js þ s; (2.2)

where Js is the entropy flux and s is the rate of entropy production
per unit volume of the system
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One can see that s is a bilinear form of fluxes J1 and (Jq� mJ1) and
thermodynamic forces �1=TðVmÞ and �1=T2ðVTÞ.

In the linear region of nonequilibrium thermodynamics, the
fluxes can be written in terms of the forces as shown in Eqs. (2.5)
and (2.6) which in matrix presentation would yield Eq. (2.7)
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Entries of matrix L¼ (lij)2�2 are Onsager's coefficients and based
on Onsager's reciprocity relations, off-diagonal entries of matrix L
are identical [11].

In conditions for which linear flux-force relations are valid, rate
of entropy production takes the quadratic form [11].
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Matrix L ¼ (lij)2�2 which satisfies Eq. (2.8) should be positive
definite and to be so, its entries should satisfy the conditions

l11 >0; l22 >0; l11l22 > ðl12Þ2: (2.9)

It is interesting to note that, if we let l11=T ¼ a, l12=T2 ¼ b,
l21=T ¼ d and l22=T2 ¼ g, we can recast Eqs. (2.5) and (2.6) in the
sameway presented by Landau [12]. Doing so, keeping inmind that
d can be replaced with bT because of equality of l12 and l21, and
replacing Vmwith the right hand side of Eq. (2.10), knowing the fact
that chemical potential is a function of concentration (volume
fraction of solvent 4) and temperature, we find
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In order to preserve the positive definiteness of matrix L, the
following conditions should be satisfied:
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q
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After deriving the heat and mass fluxes, we obtain (see
Appendix A) the governing equations
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where r and cP are the mass density and isobaric specific heat ca-
pacity of the solution respectively and are assumed to be constant.

It should be noted that aðvm=v4ÞT , ½aðvm=vTÞ4 þ b� and
ðg� ðb2=aÞTÞ are the mutual diffusion coefficient DM, thermal
diffusion coefficient DT and thermal conductivity, respectively. The
expression derived for thermal diffusion coefficient shows two
different contributions. In addition to the original contribution of
temperature gradient which is reflected by the phenomenological
coefficient b, the derivative of linear combination of chemical po-
tentials of the components with respect to temperature also
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