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This article presents a fast solver for the dense “frontal” matrices that arise from the 
multifrontal sparse elimination process of 3D elliptic PDEs. The solver relies on the fact 
that these matrices can be efficiently represented as a hierarchically off-diagonal low-rank 
(HODLR) matrix. To construct the low-rank approximation of the off-diagonal blocks, we 
propose a new pseudo-skeleton scheme, the boundary distance low-rank approximation, 
that picks rows and columns based on the location of their corresponding vertices in the 
sparse matrix graph. We compare this new low-rank approximation method to the adaptive 
cross approximation (ACA) algorithm and show that it achieves better speedup specially 
for unstructured meshes. Using the HODLR direct solver as a preconditioner (with a low 
tolerance) to the GMRES iterative scheme, we can reach machine accuracy much faster than 
a conventional LU solver. Numerical benchmarks are provided for frontal matrices arising 
from 3D finite element problems corresponding to a wide range of applications.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In many engineering applications, solving large finite element systems is of great significance. Consider the system

Ax = b

arising from the finite element discretization of an elliptic PDE, where A ∈ R
N×N is a sparse matrix with a symmetric pat-

tern. In many practical applications, the matrix A might be ill-conditioned and thus, challenging for iterative methods. On 
the other hand, conventional direct solver algorithms, while being robust in handling ill-conditioned matrices, are compu-
tationally expensive (O(N1.5) for 2D meshes and O(N2) for 3D meshes). Since one of the main bottlenecks in the direct 
multifrontal solve process is the high computational cost of solving dense frontal matrices, we mainly focus on solving these 
matrices in this article. Our goal is to build an iterative solver, which utilizes a fast direct solver as a preconditioner for the 
dense frontal matrices. The direct solver in this scheme acts as a highly accurate pre-conditioner. This approach combines 
the advantages of the iterative and direct solve algorithms, i.e., it is fast, accurate and robust in handling ill-conditioned 
matrices.
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To be consistent with our previous work, we adopt the notation used in [3]. We should also mention that ‘n’ refers to the 
size of dense matrices and ‘N ’ refers to the size of sparse matrices (e.g., number of degrees of freedom in a finite-element 
mesh).

In the next section, we review the previous literature on both dense structured solvers and sparse multifrontal solvers. 
We then introduce a hierarchical off-diagonal low-rank (from now on abbreviated as HODLR) direct solver in Section 4. 
In Section 5, we introduce the boundary distance low-rank (BDLR) algorithm as a robust low-rank approximation scheme 
for representing the off-diagonal blocks of the frontal matrices. Section 6 discusses the application of the iterative solver 
with a fast HODLR direct solver preconditioner to the sparse multifrontal solve process and demonstrates the solver for a 
variety of 3D meshes. We also show an application in combination with the FETI-DP method [21], which is a family of 
domain decomposition algorithms to accelerate finite-element analysis on parallel computers.

2. Previous work

2.1. Fast direct solvers for dense hierarchical matrices

Hierarchical matrices are data sparse representation of a certain class of dense matrices. This representation relies on the 
fact that these matrices can be sub-divided into a hierarchy of smaller block matrices, and certain sub-blocks (based on the 
admissibility criterion) can be efficiently represented as a low-rank matrix. We refer the readers to [29,33,27,30,12,15,13]
for more details. These matrices were introduced in the context of integral equations [29,33,62,43] arising out of elliptic par-
tial differential equations and potential theory. Subsequently, it has also been observed that dense fill-ins in finite element 
matrices [60], radial basis function interpolation [3], kernel density estimation in machine learning, covariance structure in 
statistic models [16], Bayesian inversion [3,5,6], Kalman filtering [45], and Gaussian processes [4], can also be efficiently 
represented as data-sparse hierarchical matrices. Broadly speaking, these matrices can be grouped into two general cate-
gories based on the admissibility criterion: (i) Strong admissibility: sub-blocks that correspond to the interaction between 
well-separated clusters are low-rank; (ii) Weak admissibility: sub-blocks corresponding to non-overlapping interactions are 
low-rank. Ambikasaran [1] provides a detailed description of these different hierarchical structures.

We review some of the previously developed structured dense solvers for hierarchical matrices and discuss them in rela-
tion to our work. Grasedyck and Hackbusch [29,27] introduced the concept of H-matrices, which are the most general class 
of hierarchical matrices with the strong admissibility criterion [29,27,30,32,31,33,34,9,10,12]. Contrary to the HODLR matrix 
structure, in which the off-diagonal blocks are low-rank, in H-matrices, the off-diagonal blocks are further decomposed into 
low-rank and full-rank blocks. Thus, the rank can be kept small. In HODLR, we make a single low-rank approximation for 
the off-diagonal blocks and the rank is larger as a result. Hence, the HODLR structure makes for a much simpler repre-
sentation and is often used because of its simplicity compared to the H-matrix structure. Grasedyck and Hackbusch [27]
suggest a recursive block low-rank factorization scheme for H-matrices. This method is based on the idea that all the dense 
matrix algebra (matrix multiplication and matrix addition) can be replaced by H-matrix algebra. As a result, the inverse of 
an H-matrix can also be approximated as an H-matrix itself. This results in a computational complexity of O(n log2(n)) for 
an H-matrix factorization.

We note that the approach in this paper is based on the Woodbury matrix identity. It is therefore different from the 
algorithm in Grasedyck and Hackbusch [27] for example. The latter is based on a block LU factorization, while the Woodbury 
identity reduces the global solve to block diagonal solves followed by a correction update.

The HODLR matrix structure is the most general off-diagonal low-rank structure with weak admissibility. Solvers for this 
matrix class have a computational cost of O(n log2 n). In an HODLR matrix, the off-diagonal low-rank bases do not have a 
nested structure across different levels [3]. The HSS matrix is an HODLR matrix but, in addition, has a nested off-diagonal 
low-rank structure. Solvers for the HSS matrices have an O(n) complexity [61,14].

Martinsson and Rokhlin [51] discuss an O(n) direct solver for boundary integral equations based on the HSS structure. 
Their method is based on the fact that for a matrix of rank r, there exists a well-conditioned column operation, which 
leaves r columns unchanged and sets the remaining columns to zero. Using this idea, they derive a two-sided compressed 
factorization of the inverse of the HSS matrix. Their generic algorithm requires O(n2) operations to construct the inverse. 
However, they accelerate their algorithm to O(n logκ (n)) when applied to two-dimensional contour integral equations.

Chandrasekaran et al. [15] present a fast O(n) direct solver for HSS matrices. In their article, they construct an implicit 
ULV H factorization of an HSS matrix, where U and V are unitary matrices, L is a lower triangular matrix and H is the 
transpose conjugate operator. Their method is based on the Woodbury matrix identity and the fact that for a low-rank rep-
resentation of the form UBV H , where U and V are thin matrices with r columns, there exists a unitary transformation Q , 
in which only the last r rows of QU are nonzero. They use this observation to recursively solve the linear system of equa-
tions. Since this method requires constructing an HSS tree, the authors suggest an algorithm that uses the SVD or the rank 
revealing QR decomposition, recursively, to construct the HSS tree in O(n2) time.

Gillman et al. [25] discuss an O(n) algorithm for directly solving integral equations in one-dimensional domains. The 
algorithm relies on applying the Sherman–Morrison–Woodbury formula (see for example [3]) recursively to an HSS tree 
structure to achieve O(r2n) solve complexity, where r is the rank of the off diagonal blocks in the HSS matrix. They also 
describe an O(r2n) algorithm for constructing an HSS representation of the matrix resulting from a Nyström discretization 
of a boundary integral equation.
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