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The immersed interface method (IIM) can be employed to solve many interface problems 
on fixed Cartesian grids by incorporating necessary interface-induced Cartesian jump 
conditions into numerical schemes. In this paper, we present a method to compute the 
necessary Cartesian jump conditions from given principal jump conditions using triangular 
mesh representation of an interface. The triangular mesh representation is simpler and 
robuster than interface parametrization for a complex or non-smooth interface. We test 
our method by using the computed Cartesian jump conditions in the IIM to solve a Poisson 
equation subject to an interface with the shape of a sphere, cube, cylinder or cone. The 
results demonstrate the expected second-order accuracy of the solution in the infinity 
norm.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The immersed interface method (IIM) was first proposed by LeVeque and Li [2] to solve elliptic equations with discon-
tinuous coefficients and singular sources. Since then it has been developed to be a general methodology for solving various 
interface problems and irregular-domain problems [3].

The key idea of the IIM is to incorporate interface-induced jump conditions into discretization schemes to achieve desired 
solution accuracy and solving efficiency. To give an example on how jump conditions are incorporated into a numerical 
scheme, we consider the central finite difference approximation of a derivative of a discontinuous function. Let g(s) be a 
function with jump discontinuities at s = l and s = r that fall within a three-node stencil as si−1 < l < si ≤ r < si+1, where 
si−1, si and si+1 are the coordinates of the stencil nodes satisfying si+1 − si = si − si−1 = h. The central finite difference 
scheme for g′′(si) on this stencil reads [5,6]

d2 g(si)

ds2
= g(si+1) − 2g(si) + g(si−1)

h2
+ O (h2)

− 1

h2

(
3∑

n=0

−[g(n)(l)]
n! (si−1 − l)n +

3∑
n=0

[g(n)(r)]
n! (si+1 − r)n

)
, (1)
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where [g(n)(l)] = g(n)(l+) − g(n)(l−) denotes the jump conditions of the n-th derivatives of g(s) at s = l, and similarly [g(n)(r)]
the jump conditions at s = r. This example shows that we can modify a standard finite difference scheme to approximate 
derivatives of a discontinuous function by adding some extra terms that involve necessary jump conditions. In particular, 
a PDE for an interface problem can be discretized on a fixed Cartesian grid by incorporating into standard discretization 
schemes the jump conditions of the solution and its derivatives with respect to Cartesian coordinates. We name these jump 
conditions Cartesian jump conditions.

For the function p, we call

[p],
[

∂ p

∂n

]
, [�p]

the principal jump conditions, which are the jump conditions of p, the normal derivative of p and the Laplacian of p across 
an interface, respectively, where n denotes a unit normal vector for the interface, and a jump condition is hereafter defined 
as [·] = (·)n+ − (·)n− with n+ and n− denoting right and left limits respectively. These principal jump conditions can often 
be derived from the physics of a problem. The goal of this paper is to obtain from the given principal jump conditions the 
following Cartesian jump conditions

[p],
[

∂ p

∂xi

]
,

[
∂2 p

∂xi∂x j

]

where xi and x j (i, j ∈ {1, 2, 3}) are Cartesian coordinates in 3D.
In [6], a systematic approach based on interface parametrization was proposed to derive the Cartesian jump conditions 

from the principal jump conditions. However, interface parametrization is practically difficult for complex or non-smooth in-
terfaces. In this paper, we propose a method to compute the Cartesian jump conditions using triangular mesh representation 
of an interface, which is more flexible and robust to deal with complex or non-smooth interfaces.

To test our method, we use the Cartesian jump conditions computed by the method in the IIM to solve the Poisson 
equation �p = f subject to the given principal jump conditions across a closed interface in 3D. Based on Eqn. (1), the 
Poisson equation can be discretized on a uniform Cartesian grid as

�h pijk = f i jk + Cijk,

where �h is the standard seven-point discrete Laplacian at the grid point (i, j, k), h is the spatial step of the grid, and Cijk
denotes the extra terms involving the necessary Cartesian jump conditions. The jump contribution Cijk is nonzero only if 
the interface cuts through the seven-point Laplacian stencil at the grid point (i, j, k).

According to Eqn. (1), the local truncation error of the seven-point discrete Laplacian is O (h) if the jump conditions of 
the third-order Cartesian derivatives are not included. However, it is difficult or costly to obtain the jump conditions of the 
third-order or higher Cartesian derivatives. Fortunately, second-order accuracy of the solution in the infinity norm can still 
be achieved in solving a Poisson equation subject to an interface if the local truncation error is reduced from O (h2) to O (h)

only for stencils cut by the interface [1]. So we only need to compute the Cartesian jump conditions listed above. Realizing 
that (si−1 − l) and (si−1 − r) in Eqn. (1) is at most O (h), we need to compute 

[
∂ p
∂xi

]
with O (h2) accuracy and 

[
∂2 p

∂xi∂x j

]
with 

O (h) accuracy.
One motivation of the work in this paper is to solve a fluid flow around moving rigid objects on a fixed Cartesian grid 

using the IIM with boundary condition capturing [8,10]. The flow is formulated such that the rigid objects are replaced 
by the virtual fluid enclosed by singular forces concentrating on the surfaces of the objects via the Dirac delta function, 
which induce jump discontinuities in the velocity and the pressure across the interfaces between the virtual and real 
fluids. The principal jump conditions for the velocity and the pressure are related with the singular forces [6], which can 
be determined explicitly in the boundary condition capturing approach [8–10]. Using the method proposed in this paper, 
we can obtain the Cartesian jump conditions explicitly. They appear at the right-hand sides of linear systems resulting 
from the discretization of the Navier–Stokes equations without modifying the coefficient matrices corresponding to the 
background standard numerical schemes, so standard fast solvers such as FFT solvers can be employed to solve the linear 
systems. Linnick and Fasel [4] presented a high-order IIM in which Cartesian jump conditions are directly computed from 
unknown solutions using one-sided finite difference schemes. Since their Cartesian jump conditions are solution-dependent, 
the coefficient matrices of their linear systems are modified and iterative solvers are required.

2. Cartesian jump conditions

Suppose that a triangular mesh representation of a closed interface is given. See Fig. 1 for examples. Suppose that the 
edge lengths of the triangular mesh is of O (h). Suppose that the principal jump conditions [p], 

[
∂ p
∂n

]
, and [�p] are given at 

appropriate locations (specified later) on the triangular mesh. The Cartesian jump condition [p] is given as a principal jump 
condition. We compute the Cartesian jump conditions 

[
∂ p
∂xi

]
and 

[
∂2 p

∂xi∂x j

]
at each vertex of the triangular mesh.
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