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Electron repulsion integral tensor has ubiquitous applications in electronic structure 
computations. In this work, we propose an algorithm which compresses the electron 
repulsion tensor into the tensor hypercontraction format with O(nN2 log N) computational 
cost, where N is the number of orbital functions and n is the number of spatial grid points 
that the discretization of each orbital function has. The algorithm is based on a novel 
strategy of density fitting using a selection of a subset of spatial grid points to approximate 
the pair products of orbital functions on the whole domain.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Given a set of orbital functions {ψi} ⊂ L2(R3), the four-center two-electron repulsion integrals

(i j|kl) =
∫∫

R3×R3

ψi(x)ψ j(x)ψk(y)ψl(y)

|x − y| dx dy (1)

are universally used in many electronic structure theories, such as Hartree–Fock, density functional theory (DFT), RPA, MP2, 
CCSD, and GW. As a result, a key step to accelerate ab initio computations in quantum chemistry and materials science is 
to get an efficient representation of the electron repulsion integral tensor.

One of the most popular methods for compressing the electron repulsion integral is the density fitting approximation. 
This method, also known as resolution of identity approach [3,18,19,22,24,25], amounts to representing pair products of 
orbital functions ψi(x)ψ j(x) in terms of a set of auxiliary basis functions

ρi j(x) := ψi(x)ψ j(x) ≈ ρ̃i j(x) =
∑
μ

Cμ
i j Pμ(x), (2)

where μ = 1, 2, . . . , Naux labels the auxiliary basis functions. The auxiliary basis functions are constructed either explicitly 
(e.g., a set of Gaussian-type atom-centered basis functions) or implicitly by using singular value decomposition on the 
overlap matrix of the set of N2 functions ρi j(x) [4,5].
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After the auxiliary basis functions are determined, a least square fitting is used to determine the coefficient Cμ
i j . When 

the standard L2 metric is used in the least square fitting, one obtains

Cμ
i j =

∑
ν

〈i j|ν〉S−1
νμ, (3)

(i j|kl) ≈
∑

μμ′νν ′
〈i j|ν〉S−1

νμVμμ′ S−1
μ′ν ′ 〈ν ′|kl〉 (4)

with the shorthand notations

〈i j|ν〉 =
∫

ψi(x)ψ j(x)Pν(x)dx, (5)

Sμν =
∫

Pμ(x)Pν(x)dx, and (6)

Vμν =
∫∫

Pμ(x)Pν(y)

|x − y| dx dy. (7)

It is also possible to use the Coulomb weight in the least square fitting, which leads to

Cμ
i j =

∑
ν

(i j|ν)V −1
νμ, (8)

(i j|kl) ≈
∑
μν

(i j|μ)V −1
μν (ν|kl) (9)

with the shorthand notation

(i j|ν) =
∫∫

ψi(x)ψ j(x)Pν(y)

|x − y| dx dy. (10)

A closely related idea to density fitting is the incomplete Cholesky decomposition of the electron repulsion integrals [1,11]:

(i j|kl) ≈
M∑

μ=1

Lμ
i j Lμ

kl , (11)

where Lμ
i j are numerically obtained Cholesky vectors. The cost of getting the resolution of identity approximation, assuming 

O(N) auxiliary basis functions, is O(N4), where N is the number of orbital functions. Other methods for the electron 
repulsion integral tensor include multipole moment approaches [8,23,26,27] and pseudospectral representation [6,13,14].

More recently, the tensor hypercontraction of the electron repulsion integral have been proposed in [10,15,17], which 
aims at an approximation of the electron repulsion integral tensor as

(i j|kl) ≈
∑
μν

Xμ
i Xμ

j Zμν Xν
k Xν

l , (12)

where μ, ν are the indices for the decomposition. The factor X is taken to be the weighted collocation matrix arises from 
numerical quadrature of the electron repulsion integral and Z is determined by a least square procedure. The computational 
cost of obtaining the approximation is either O(N5) when direct quadrature of electron repulsion integral is used or O(N4)

with the help of density fitting procedure. The tensor hypercontraction opens doors to efficient algorithms for several 
electronic structure theories, see e.g., [9,10,16,17,20,21].

In this work, we propose an O(nN2 log N) algorithm to get the tensor hypercontraction of the electron repulsion integral. 
It is based on an approximation of ρi j(x) similar to (2), but with the key advantage that the coefficient Cμ

i j has separate 
dependence on the indices i and j. Such an approximation is achieved by an interpolative decomposition which chooses 
selected grid points xμ to interpolate the pair product density ρi j . This is different from the usual density fitting strategy 
with a predetermined set of auxiliary basis functions. In this sense, our algorithm tries to find an optimal set of the auxiliary 
basis functions, such that the tensor hypercontraction format can be immediately obtained.

2. Algorithm

Our algorithm is based on the randomized column selection method for low-rank matrix, recently developed in [12,28]. 
For an m × n matrix A, the column selection method looks for an interpolative decomposition to approximate A ≈ C P
such that the discrepancy ‖A − C P‖ is minimized, where C is an m × c matrix consists of c columns of A and P is a 
c × n matrix. The interpolative decomposition based on randomized column selection has recently been used for finding 
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