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In this study, we investigate the dispersive properties of smoothed particle magnetohydro-
dynamics (SPM) in a strongly magnetized medium by using linear analysis. In modern SPM, 
a correction term proportional to the divergence of the magnetic fields is subtracted from 
the equation of motion to avoid a numerical instability arising in a strongly magnetized 
medium. From the linear analysis, it is found that SPM with the correction term suffer from 
significant dispersive errors, especially for slow waves propagating along magnetic fields. 
The phase velocity for all wave numbers is significantly larger than the exact solution and 
has a peak at a finite wavenumber. These excessively large dispersive errors occur because 
magnetic fields contribute an unphysical repulsive force along magnetic fields. The disper-
sive errors cannot be reduced, even with a larger smoothing length and smoother kernel 
functions such as the Gaussian or quintic spline kernels. We perform the linear analysis for 
this problem and find that the dispersive errors can be removed completely while keep-
ing SPM stable if the correction term is reduced by half. These findings are confirmed by 
several simple numerical experiments.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Smoothed particle hydrodynamics (SPH) is an entirely Lagrangian particle method for simulating fluid flows [1,2]. This 
Lagrangian nature offers major advantages when SPH is applied to problems with a large, dynamic range of spatial scales. 
Furthermore, SPH can easily incorporate other physics such as self-gravity, radiative transfer, or chemistry. Thus, SPH is 
widely used in a variety of astrophysical problems such as formation of large-scale structures, galaxies, stars, and planets.

Recently, several authors have tried to extend SPH to magnetohydrodynamics (MHD) because magnetic fields play an 
important role in a variety of astrophysical environments. In this study, we call SPH for MHD “smoothed particle magne-
tohydrodynamics” (SPM). Price and Monaghan [3] have developed an SPM method with artificial viscosity and resistivity 
(also see [4]). Iwasaki and Inutsuka [5] have applied Godunov’s method to SPM. We call it “GSPM”. Recently, Iwasaki and 
Inutsuka [6] have modified their original GSPM formulation, based on their derivation of the equation of motion in GSPM 
from an action principle.

Unfortunately, conservative formulations of SPM are known to inevitably suffer from numerical instability for low β
plasma because of negative stress, where β is the ratio of the gas pressure to the magnetic pressure. This instability has 
already been pointed out by Phillips and Monaghan [7] (also see [8]). Among several methods proposed for removing the 
numerical instability [7,8,3], an approach by Børve, Omang, and Trulsen [9] is widely used in modern SPM methods (e.g., 
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[4–6,10]). A broad discussion of stable SPM schemes is found in a review by Price [11]. In the approach of Børve, Omang, and 
Trulsen [9], a correction term, B(∇ · B)/4π , is subtracted from the right-hand side of the equation of motion. The correction 
term is essentially zero if ∇ · B = 0 is satisfied. By a linear analysis of SPM, Børve, Omang, and Trulsen [12] (hereafter 
BOT04) found that half of the correction term, or B(∇ · B)/8π , is large enough to remove the numerical instability. This was 
confirmed by Barnes, Kawata, and Wu [13], who found that half the correction term provided the least error and minimized 
the violation of energy and momentum conservation in a variety of test calculations. Børve, Omang, and Trulsen [14] have 
proposed a sophisticated method, wherein the size of the correction term varies among the SPH particles.

However, it is still unclear how the correction term affects the capability of SPM to accurately model fluid flows. Guiding 
the optimal selection of the amount of correction in a rigorous manner is important. Balsara [15] has investigated the linear 
stability of various SPH formulations, kernel functions, and ratios of smoothing length to interparticle distance (also see 
[8,16]). They have suggested an optimal range of parameters from obtained dispersion relations. Although these analyses 
are valid only for the linear regime and a regular particle configuration, they provide us with a lot of knowledge for 
achieving further improvements to SPM schemes. Pioneering work for SPM has been done by BOT04, who investigate the 
dispersive properties of SPM. They parameterize the size of the correction term with a free parameter ξ (0 ≤ ξ ≤ 1), and 
use ξ × B∇ · B/4π as the correction term. They found that as mentioned above, ξ = 1/2 is large enough to stabilize SPM for 
low β plasma, and also suggested that smoother kernels, such as Gaussian or the quintic spline kernels, reproduce correct 
phase velocities, while the cubic spline causes large dispersion errors. However, their study is restricted to several linear 
waves in the long-wavelength limit and to the case with ξ = 1/2 although many authors still adopt ξ = 1.

In this study, we investigate detailed dispersive properties of SPM for low β plasma by changing ξ , the kernel functions, 
and the ratio of smoothing length to interparticle distance. From the results, a suggestion of an optimal choice of the size 
of the correction term is provided.

The paper is organized as follows: in Section 2, the basic equations of SPM are reviewed. In Section 3, a dispersion 
relation is derived from the basic equations of SPM and its asymptotic behavior in the long- and short-wavelength limits is 
discussed. The results of the linear analysis are presented in Section 4. To confirm the results of the linear analysis, several 
numerical experiments are demonstrated in Section 5. Our results are discussed in Section 6. Section 7 offers a summary.

2. SPM equations

The basic equations of MHD are given by

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂vμ

∂t
= 1

ρ
∇ν T μν − ξ

4πρ
Bμ∇ν Bν, (2)

and

d

dt

(
Bμ

ρ

)
= Bν

ρ
∇ν vμ, (3)

where T μν is the stress tensor,

T μν = −
(

P + B2

8π

)
δμν + BμBν

4π
, (4)

and d/dt = ∂/∂t + v · ∇ is the Lagrangian time derivative. The second term on the right-hand side of equation (2) is the 
correction term introduced to remove the numerical instability (BOT04). The parameter ξ specifies the size of the correction 
term. In this study, ξ is assumed to be constant for all particles. For simplicity, instead of the energy equation, the isothermal 
equation of state is assumed:

P = c2ρ, (5)

where c is the sound speed. In the adiabatic case, the dispersive properties of SPM are expected to be qualitatively the same 
as those in the isothermal case.

In SPH, the density of the a-th particle is evaluated by the following equation:

ρa =
∑

b

mb W (xa − xb,h), (6)

where the subscripts denote the particle label, mb is the mass of the b-th particle, W (x, h) is a kernel function, and h is 
the smoothing length. In the linear analysis presented in this study, the smoothing length is assumed to be constant. In the 
numerical experiments shown in Section 5, a variable smoothing length is used.

There are several conservative formulations of SPM. Here, we show two schemes: the standard SPM formulation, the 
GSPM formulation. The basic equations of standard SPM [9,3,4] are given by
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