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This paper concerns the reconstruction of grating profiles from scattering data. The 
inverse problem is formulated as an optimization problem with a regularization term. We 
devise an efficient finite element method (FEM) and employ a quasi-Newton method to 
solve it. For the direct problems, the FEM stiff and mass matrices are assembled once 
at the beginning of the numerical procedure. Then only minor changes are made to the 
mass matrix at each iteration, which significantly saves the computation cost. Numerical 
examples show that the method is effective and robust.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Direct and inverse scattering by periodic structures has many applications in diffractive optics, where periodic structures 
are also known as diffraction gratings [17]. In this paper, we consider the inverse problem of reconstructing grating profiles.

We start with the scattering of time-harmonic electromagnetic plane waves (TE mode) by a penetrable grating. Suppose 
the grating surface � is defined by

� := {(
x, f (x)

)| f (x) ∈ X
}
,

where X is the set of piecewise continuous L-periodic functions in R (see Fig. 1). The whole space is separated into two 
parts:

�+ := {(x, y) ∈R
2 : y > f (x)} , �− := {(x, y) ∈R

2 : y < f (x)}.
The refractive index n = n1 in �+ and n = n2 in �− , where n1 and n2 are different constants. For simplicity, we set n1 = 1
throughout the paper. Furthermore, we assume that Re n2 � 0 and Im n2 � 0.

Let k j = k
√

n j, j = 1, 2, where k is the wavenumber. Let θ ∈ (−π/2, π/2) be the incident angle and α = k1 sin θ, β(1) =
k1 cos θ . The incident plane wave is given by

ui(x, y) = exp(iαx − iβ(1) y).

Since ui(·, y) is α-quasi-periodic, i.e.,
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Fig. 1. The physical configuration of the scattering problem.

ui(x + L, y) = exp(iαL)ui(x, y),

the total field u = ui + us is also α-quasi-periodic,

u(x + L, y) = exp(iαL)u(x, y), (1.1)

and satisfies the Helmholtz equation

�u + k2nu = 0 , (x, y) ∈R
2. (1.2)

Here, the scattered field us in �+ and transmitted field u in �− satisfy the Rayleigh expansion conditions (see [17])

us(x, y) =
∑
n∈Z

u+
n exp(iαnx + iβ(1)

n y) , y > max
t∈R

f (t), (1.3)

u(x, y) =
∑
n∈Z

u−
n exp(iαnx − iβ(2)

n y) , y < min
t∈R f (t), (1.4)

where

αn = α + 2nπ

L
, β

( j)
n =

⎧⎨
⎩
√

k2
j − α2

n , |αn| � k j,

i
√

α2
n − k2

j , |αn| > k j.

Let �+ and �− be straight lines above and below �, respectively, such that

�+ = {(x,h+) : h+ > max
t∈R

f (t)}, �− = {(x,h−) : h− < min
t∈R f (t)},

where h+, h− ∈ R. Let D = [0, L] × [h−, h+]. For φ±(x, h±) =∑
n∈Z φ̂±

n eiαnx , the Dirichlet to Neumann maps T ± on �± are 
given by

T +(φ+) =
∑
n∈Z

iβ(1)
n φ̂+

n eiαnx on �+,

T −(φ−) =
∑
n∈Z

iβ(2)
n φ̂−

n eiαnx on �−.

The Rayleigh expansions (1.3)–(1.4) are equivalent to the following boundary conditions

∂us

∂ y
= T +us on �+, (1.5)

∂u

∂ y
= −T −u on �−. (1.6)

In this paper, we consider the inverse problem to reconstruct the penetrable grating profile from multiple frequency 
scattering data. In particular, for incident waves ui , assuming the scattered fields are measured on �+ , i.e., umeas(x) :=
us(x, h+), we seek a profile �̃ such that, the scattering data ũs(x, h+) corresponding to �̃ coincides (approximately) with 
the measured data.

Inverse diffractive grating problem has been an active research area. Early uniqueness results include [13], in which it 
is shown that a perfectly reflecting periodic profile is uniquely determined by the scattered waves due to various incident 
waves, and [2], where the author proved that the grating profile, which is the interface of a dielectric region with absorption 
and a perfectly reflecting region, can be uniquely determined by the scattered field on a straight line using a single incident 
wave. Numerical methods to reconstruct grating profiles have been developed by many researchers. For example, in [6,7], 
the authors gave a two-step optimization method based on Tikhonov regularization for Dirichlet and transmission problems. 
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