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We consider the numerical approximations of the classical phase-field vesicle membrane 
models proposed a decade ago in Du et al. (2004) [6]. We first reformulate the model 
derived from an energetic variational formulation into a form which is suitable for numer-
ical approximation, and establish the energy dissipation law. Then, we develop a stabilized, 
decoupled, time discretization scheme for the coupled nonlinear system. The scheme is 
unconditionally energy stable and leads to linear and decoupled elliptic equations to be 
solved at each time step. Stability analysis and ample numerical simulations are presented 
thereafter.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In cell biology, a vesicle is a small organelle within a cell, consisting of fluid enclosed by a lipid bilayer membrane. 
There have been many experimental and analytic studies on the configurations and deformations of elastic vesicle bio-
membranes [2,6,12–14,17]. In the last decade, using the energetic, variational diffuse interface approach, Du et al. proposed 
a phase-field model to simulate the deformations of simple vesicles coupled with incompressible flow fields [6–8,10], in 
which, the Helfrich bending elastic energy of the surface is replaced by a phase field functional. The evolution equations are 
then resulted from the variations of the action functional of the free energy.

The diffuse-interface/phase-field models, whose origin can be traced back to [9,33], have been proved efficient with 
much success. A particular advantage of the phase-field approach is that they can often be derived from an energy-based 
variational formalism, leading to well-posed nonlinear coupled systems that satisfy thermodynamics-consistent energy dis-
sipation laws. Thus it is especially desirable to design numerical schemes that preserve the energy dissipation law at the 
discrete level. Due to the rapid changes near the interface, the non-compliance of energy dissipation laws of the numer-
ical scheme may lead to spurious numerical solutions if the grid and time step sizes are not carefully controlled [11,21]. 
Another main advantage of energy stable schemes is that they can be easily combined with an adaptive time stepping 
strategy [22–24,26–28,35].
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To construct the numerical schemes for the typical phase-field models coupled with the hydrodynamics, in particular, the 
Allen–Cahn or Cahn–Hilliard equations, the main difficulties include (i) the coupling between the velocity and phase function 
through the convection term in the phase equation and nonlinear stress in the momentum equation; (ii) the coupling of 
the velocity and pressure through the incompressibility constraint; (iii) the stiffness of the phase equation associated with 
the interfacial width. For the phase-field vesicle membrane model [6–8,10], things are about to get even worse due to 
some extra nonlinear terms with second order derivatives. To the best of the authors’ knowledge, there does not exist any 
easy-to-implement and energy stable scheme for this model so far.

Thus, for the phase-field membrane vesicle model, the main purpose of this paper is to construct a time discretization 
scheme which (a) satisfies a discrete energy law; and (b) leads to decoupled elliptic equations to solve at each time step. 
This is by no means an easy task due to many highly nonlinear terms and the couplings among the velocity, pressure and 
phase function.

The rest of the paper is organized as follows. In Section 2, we introduce the phase-field vesicle membrane model and 
derive the energy dissipation law. In Section 3, we reformulate the PDE to an equivalent form, construct a decoupled, energy 
stable numerical scheme, and give the stability analysis. In Section 4, we present the spatial discretization using the finite 
element method. In Section 5, we present some numerical results to illustrate the accuracy and efficiency of the proposed 
scheme and summarize our contributions. Some concluding remarks are given in Section 6.

2. Models

The equilibrium shape of a vesicle membrane is determined by minimizing the elastic bending energy [3,4],

E =
∫

�

(a1 + a2(H − c0)
2 + a3 K )ds, (2.1)

where H = k1 + k2

2
represents mean curvature of the membrane surface; K = k1k2 is Gaussian curvature; k1, k2 are two 

principle curvatures; a1 is the surface tension; a2, a3 are bending rigidities; c0 represents spontaneous curvature; � is a 
smooth compact surface in the domain � ∈ R3.

If we consider the model to be isotropic, i.e., the spontaneous curvature c0 = 0 and neglect the constants a1 and a3 due 
to the Gauss–Bonnet formula, then the elastic bending energy can be written by,

E =
∫

�

K

2
H2ds. (2.2)

In the framework of phase-field method, a variable φ(x) = tanh
( d(x)√

2ε

)
is defined for all x ∈ �, where d(x) is the signed 

distance between a point x and �, positive inside and negative outside; ε is a transition parameter that is taken to be very 

small. Thus H = −1

2
tr(∇2d(x)) on the surface and one can obtain the bending energy as follows [8],

Eb =
∫

�

ε

2
|�φ − f (φ)|2dx, (2.3)

where F (φ) = (φ2 − 1)2

4ε2
is the Ginzburg–Landau double well potential, f (φ) = F ′(φ) and ε is penalty parameter.

If one considers the constraints of the volume and the surface area, then the energy functional Eb includes two extra 
terms as follows [6,10],

Eb =
∫

�

ε

2
|�φ − f (φ)|2dx + 1

2
M1(A(φ) − α)2 + 1

2
M2(B(φ) − β)2, (2.4)

where

A(φ) =
∫

�

φ(x)dx, B(φ) =
∫

�

ε(
1

2
|∇φ|2 + F (φ))dx, (2.5)

where A(φ) denotes the volume fractions, B(φ) is approaching a value of 2
√

2/3 times of superficial area of the phase, 
M1 and M2 are the positive penalty parameters, α and β denote the constants of the volume and surface area, respectively.

Assuming the system is a vesicle bounded by incompressible fluid flows, the total energy Etot of the hydrodynamic 
system is a sum of the kinetic energy Ek and the bending energy Eb , i.e.,

Etot = Ek + λEb =
∫

�

1

2
ρ|u|2dx + λEb, (2.6)

where ρ is the density, u is the velocity, λ is the surface tension parameter.
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