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We present computational advances and results in the implementation of an entropy-
based moment closure, MN , in the context of linear kinetic equations, with an emphasis 
on heterogeneous and large-scale computing platforms. Entropy-based closures are known 
in several cases to yield more accurate results than closures based on standard spectral 
approximations, such as PN , but the computational cost is generally much higher and 
often prohibitive. Several optimizations are introduced to improve the performance of 
entropy-based algorithms over previous implementations. These optimizations include the 
use of GPU acceleration and the exploitation of the mathematical properties of spherical 
harmonics, which are used as test functions in the moment formulation. To test the 
emerging high-performance computing paradigm of communication bound simulations, we 
present timing results at the largest computational scales currently available. These results 
show, in particular, load balancing issues in scaling the MN algorithm that do not appear 
for the PN algorithm. We also observe that in weak scaling tests, the ratio in time to 
solution of MN to PN decreases.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Kinetic equations, such as the Boltzmann equation and the radiation transport equation, are integro-differential equations 
with up to seven independent variables: three space, three momentum, and time. Moment methods track the evolution of 
only a finite number of weighted momentum averages, or moments, of the kinetic distribution, thus reducing the dimen-
sionality of the problem. However, this reduction requires a closure that approximates in some way the kinetic information 
that is lost in the averaging process. Thus, various methods will differ by the closure used in their formulation.

In the context of radiation transport, the classical moment method is the spherical harmonic expansion, colloquially 
termed PN in the radiation transport community [11,32,40]. This method uses a simple truncation closure that results in 
a linear hyperbolic balance law. However, the method may suffer from numerical artifacts, most notably large oscillations 
that can result in negative particle concentrations, especially in the streaming particle regime, where collisions are rare [7]. 
An alternative to the PN closure is a more complicated nonlinear closure based on minimizing a physically relevant, convex 
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function related to the entropy of the physical system [13,20,31]. The resulting method, colloquially termed MN in the 
radiation transport community, yields a nonlinear hyperbolic balance law that, unlike the PN method, formally captures the 
correct streaming limit [13], but at the same time, is accurate in scattering dominated regimes [9,17]. The MN method has 
been shown to be more accurate in several test cases [8,14,16,20] and in several different applications [6,15,18,33,36,45]. 
However, it requires the solution of a minimization problem at every spatial cell of the discretized domain. In general, the 
minimization must be solved numerically. This causes the MN method to require many more floating point operations than 
the PN method, even though the methods have the same data communication patterns. To avoid the computational overhead 
of the minimization problem, some approaches generate approximations of the entropy-based closure using look-up tables 
or interpolation schemes [34,35,47]. Such approximations are generally less robust than the original entropy-based closures 
and have, so far, been limited to low-order moment systems. Even so, in some cases, they maintain enough of the structure 
from the entropy-based approach to be considered as a suitable alternative.

The computational expense of the MN method makes it prohibitive for serial or even small-scale parallel implementa-
tions. However, for large scale computations on high performance machines, it is expected that the computing time for the 
PN method will eventually become dominated by communication, and in such cases, the MN method will be more compet-
itive in time to solution. Therefore progress in this area depends on three factors: (i) algorithmic improvements in solving 
the minimization problem that defines the MN closure, (ii) performance improvements that leverage the available computer 
hardware, and (iii) scaling to extremely large problems. The work here builds on algorithmic improvements in [2,3].1 In the 
current paper, we address the other two factors. First we design and test several optimizations for the MN algorithm that 
reduce the time to solution by as much as 10 times in some cases. We then explore scalability of the MN algorithm using an 
explicit time integration algorithm. Using the supercomputer Titan, which is housed at Oak Ridge National Laboratory and 
operated by the Oak Ridge Leadership Computing Facility, we find the MN algorithm weakly scales almost perfectly out to 
17,576 compute nodes while the PN algorithm displays an increase in time per node by a factor of 1.2× to 4×, depending 
on the amount of data per node. However, even with performance improvements, the time to solution of the MN algorithm 
is still approximately 25 times greater than the time to solution of the PN algorithm when both are run at full scale.

The layout of the paper is as follows. In Section 2, we briefly summarize the moment approach, discuss important imple-
mentation details, and introduce two test problems that will be used for numerical simulations. In Section 3, we introduce 
three improvements to the MN algorithm: one that leverages structure in the Hessian matrix of the MN minimization al-
gorithm and two that use GPUs to accelerate the two most arithmetically intensive parts of the computation. In Section 4, 
MN statistics and timing results are presented for the two test problems. Results of weak scaling tests for PN and MN are 
also compared. Section 5 is for conclusions and discussion. The Appendix contains useful technical details about spherical 
harmonics and Gaunt coefficients. Appendix D contains a glossary for the variables used throughout the paper.

2. Moment equations

In this section, we briefly summarize the necessary background material on moment methods, give details on numerical 
implementation, and present two initial conditions used in the numerical examples.

2.1. Formulation

The governing equation for this study is a linear kinetic transport equation for unit speed particles in an infinite medium. 
This equation takes the form

∂t f + � · ∇x f = 1

4π
σs〈 f 〉 − σt f , (1)

where (i) x ∈R
3 is a point in space, (ii) � ∈ S

2 (the unit sphere) is a velocity direction (velocity magnitude is 1), (iii) t > 0 is 
a point in time, (iv) f (x, �, t) is the kinetic density of particles with respect to the measure dxd�, (v) σs(x) is the scattering 
cross section, (vi) σt(x) is the total cross section, and (vii) 〈·〉 = ∫

S2 · d�. In general σt ≥ σs ≥ 0; for the purposes of this 
paper, we set σt = σs = 1.

Moment equations are derived from (1). Let m(�) = (m1(�), . . . , mM(�))T be a finite vector of real-valued, normalized 
spherical harmonics2 (defined in Appendix A) of degree less than or equal to N with length M = (N + 1)2. Define the finite 
vector of moments with respect to � as u f (x, t) = 〈m f 〉. Then according to (1), u f satisfies

∂tu f + ∇x · 〈�m f 〉 = −Q u f , (2)

where Q = diag(0, 1, . . . , 1). The system (2) is not closed because the flux 〈�m f 〉 is a linear combination of moments up 
to degree N + 1 whereas u f only contains moments up to and including degree N .

1 Although not discussed here, other efforts to solve the minimization problem have been documented in [3].
2 The choice of spherical harmonics is not necessary, but it is common in radiation transport. This is because they are eigenfunctions of a more general 

scattering operator [32].
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