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Fourier–Galerkin discretizations of PDEs can often be preconditioned by a matrix that is 
the union of a dense M × M matrix plus a large matrix that is either diagonal or banded 
with small bandwidth. This was suggested forty years ago by L.M. Delves. For our two-
dimensional example, the preconditioned iteration converges geometrically fast to machine 
precision in less than ten iterations. If the residual of the partial differential equation is 
evaluated by Fast Fourier Transform (FFT), the cost scales almost linearly in the number of 
unknowns. On a 6144 × 6144 grid, the computation needed less than an hour in Matlab 
on a laptop. The dense block requires a total degree ordering; the FFT evaluation of the 
residual requires speedometer ordering of the Fourier coefficient matrix. We show that 
this dual bookkeeping is essential but not difficult.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Single domain spectral methods are very accurate but generate dense discretization matrices that are expensive to form 
and factor, and are ill-conditioned for high degree N and/or high order differential equations. Preconditioned iterative meth-
ods have been order-of-magnitude cost-reducers. Both finite difference and finite element nodal preconditioners are very 
useful, but are not inexpensive for multidimensional problems [1].

Forty years ago, L.M. Delves proposed an alternative that generalizes easily to multiple dimensions except for the issue of 
ordering the unknowns [2,3]. This operates in “modal space” (that is, on the Galerkin matrix) rather than on the nodal basis 
and the pseudospectral collocation matrix. Galerkin approximations are usually not “diagonally dominant” in the sense that 
is so valuable in iterations for finite difference matrices. However, in many cases, the diagonal element of the j-th row of the 
Galerkin matrix does become larger and larger relative to the other elements in the same row and column as j → ∞. In this 
sense, the Galerkin matrix is “asymptotically diagonal”. Delves and Freeman’s monograph [3] provides a strong theoretical 
foundation for this concept.

The underlying cause is that the Fourier–Galerkin discretization of dku/dxk is a diagonal matrix whose elements grow
with row/column index j as jk whereas the Galerkin representation of a term like q(x)u(x) is a dense matrix whose 
elements are bounded independent of the row and column indices [1].

For an N × N two-dimensional tensor product grid, Delves’ preconditioner is an M × M dense matrix plus an (N2 −
M) × (N2 − M) diagonal matrix; all elements of both are copied from the N2-dimensional Galerkin matrix. (The diagonal 
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Fig. 1. Each pair of numbers gives the x and y wavenumbers of the basis function in the spectral coefficient matrix. The enclosing shapes indicate the total 
degree; thus, the stars enclose the five coefficients of the basis functions whose total degree is precisely four.

matrix often needs to be generalized to a banded matrix of small bandwidth, but for simplicity we restrict ourselves to 
a “block-and-diagonal” preconditioner here.) For ODEs, the “Delves” block is just the upper left M × M submatrix of the 
Galerkin matrix [1]. For PDEs, block selection is more complicated.

It is easiest to illustrate the key ideas using a Fourier cosine basis. However, for non-periodic problems, there has been 
an upsurge of interest in discretizations that employ “integration sparsification”. A half dozen variants are compared in [6]; 
although the rationales seem wildly different, the ensuing discretizations are very similar. Olver and Townsend, for example, 
use a Petrov–Galerkin strategy with ultraspherical polynomials as the “test functions” while retaining Chebyshev polynomials 
as the basis functions [8,1]. The motive for this “integration sparsification” is to drastically reduce ill-conditioning, but the 
diagonalization or near-diagonalization of the highest derivative renders Delves’ iteration much more effective as explained 
in our forthcoming publications [4,6,5,7].

Here, we concentrate on an issue important to both Fourier and Chebyshev discretizations. The key to minimizing both 
floating point operations and memory is to iterate using both a preconditioner and Fast Fourier Transform residual evalu-
ation. It is then unnecessary to ever compute or store the N2 × N2 Galerkin matrix [1]. (Preconditioned iterations require 
only direct matrix solves for the preconditioning matrix, here a block-and-diagonal matrix treated as two decoupled matrices 
of size M × M and N × N as we shall now explain.)

Multidimensional transforms are computed efficiently only as nested one-dimensional transforms, which requires writing 
the Fourier coefficients as an N × N matrix with “speedometer ordering”

aI ≡ coefficient of cos(mx) cos(ny),m = 0, . . . , (N − 1); n = 0, . . . , (N − 1) (1)

where I = m + 1 + nN, I = 1, . . . (N2) as illustrated in Fig. 1. Denote the “fractional part” function by x ≡ x − �x� where 
�x� = floor(x) is the “floor” function, the largest integer ≤ x. If {I/N} > 0, then the speedometer inverse functions are 
m = N{I/N} − 1 and n = (I − m − 1)/N). If {I/N} = 0, then m = N − 1 and again n = (I − m − 1)/N).

Unfortunately, asymptotic diagonal dominance depends on the growth of m2 + n2, the contribution of the second deriva-
tives to the diagonal Galerkin matrix elements. Therefore, it is the terms of smallest total degree that must be included in the 
M × M block where the “total degree” of a basis function is

tdeg
(
cos(mx) cos(ny)

) ≡ m + n (2)

The number of basis functions satisfying tdeg(cos(mx) cos(ny)) ≤ D is M = (D + 2)(D + 1)/2 where D is the degree trunca-
tion and M is the size of the “Delves” block. The basis functions for the Delves block are an upper left triangular submatrix 
of the Fourier coefficient matrix (Fig. 1). (Delves and Freeman’s theory and numerical experimentation guide the choice of 
D and M . Suffice it to say that for many problems, M 	 N gives fast convergence [3,6,4,5,7,1].)

The bookkeeping is not onerous because the M × M block and the diagonal matrix of dimension (N2 − M) are completely 
decoupled. Solving the preconditioning matrix problem, as necessary in every iteration of whatever iteration scheme we 
chose, splits into two separate matrix solves.

It is easy to compute the Galerkin matrix elements of the M × M block by trapezoidal rule numerical quadrature provided 
that we have a mapping from the block index “jblock” to (m, n), the wavenumbers of the Fourier basis. The matrix elements 
of the Galerkin block are, denoting the differential operator by L and allowing the block indices to run from jblock, kblock =
1, 2, . . . , M ,

G D
jblock,kblock = 4

π2

π∫

0

dx

π∫

0

dy cos
(
mblock[ jblock]x) cos

(
nblock[ jblock]y

)

× L cos
(
mblock[kblock]x) cos

(
nblock[kblock]y

)
(3)
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