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a b s t r a c t

This work describes a comprehensive numerical model of solution blowing process of multiple three-
dimensional polymer jets issued from a die nosepiece into a high-speed air flow and deposited onto a
moving screen. The model solves the quasi-one-dimensional equations of the mechanics of free liquid
jets with the jet axis configuration being three-dimensional. It accounts for the polymer solution
viscoelasticity, jet interaction with the surrounding high-speed air flow, and solvent evaporation and jet
solidification. The results include the polymer jet configurations in flight as well the detailed information
on the pattern in which the oncoming polymer jets are deposited on the moving screen (the so-called
lay-down), and its characteristics, in particular, the fiber-size distributions obtained under different
conditions. The work also describes experiments on solution blowing and comparison of the numerical
and experimental data.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Solution blowing is kindred to meltblowing. In solution blowing
polymer solution is issued as a slow jet into a co-flowing sub- or
supersonic gas jet which stretches the polymer jet directly, as well
as via a vigorous bending instability, thus leading to formation of
polymer nanofibers. In meltblowing molten polymer jet undergoes
similar transformations in co-flowing subsonic gas jet, which
results in formation of polymer microfibers. For several decades
meltblowing, which is more mature than solution blowing, gained
immense popularity in nonwoven industry, which used several
thermoplastic polymers to form nonwoven mats of polymer
microfibers in the size range of 1e100 mm [1e4]. In distinction
to meltblowing which results in microfibers, solution blowing
results in nanofibers. It does it with the production rate superior to
electrospinning and with much less restrictions on the electrical
parameters of polymer solutions [5e7]. Solution blowing has been
used to form polymer nanofiber mats for different applications,
such as nanotubes [6,8], microfiltration [9], and biomedical

applications [10,11]. Successful applications of solution blowing in
forming nanofibers from various biopolymers were recently
demonstrated [11e14].

Recent theoretical/numerical and experimental results shed
light on the physical mechanisms responsible for microfiber for-
mation in meltblowing and provided their detailed description
[15e17]. The situation with solution blowing is different: until now
it has been lacking a theoretical description. Since solution blowing
is related to meltblowing, and in general, to free liquid jets moving
relative to the surrounding gas with high speed, it is worth of
mentioning some of these works as an appropriate context for the
present work [7,18]. Highly viscous liquid jets moving with a high
speed relative to the surrounding gas experience lateral distributed
force which tends to increase bending perturbations, as was
revealed in the seminal work [19]. A general theory of thin liquid
jets moving in air applicable to both Newtonian and non-
Newtonian liquids, including viscoelastic polymer solutions and
melts, was given in Refs. [18,20]. It was already applied to describe
electrospinning [21,22] and meltblowing [15e17]. This approach is
extended in the present work to incorporate solution blowing.

The present article discusses the theoretical aspects in Section 2.
Section 3 is devoted to the description of the experimental setup.
The results are presented and discussed in Section 4, and the
conclusions are drawn in Section 5.
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2. Theoretical

2.1. Straight part of the jet

The experimental data discussed below show that polymer so-
lution jets in solution blowing possess a straight part where the
cross-sectional diameter of the jet is still large enough to prevent
significant bending perturbations. The jet is straight, pulled in the
axial direction by the surrounding high-speed gas flow and atten-
uating in response. This happens on the background of solvent
evaporation. Following Ref. 22, themass of an unperturbed element
of unit length in the straight part of the jet decreases according to
the following equation

dðfVÞ
dx

¼ �hm

�
Cs;eqðTÞ � Cs;∞

�
2pa (1)

Here x is the axial coordinate reckoned along the straight jet axis, f
is the area of a jet cross-section which is assumed to be circular,
with a being its radius, V is the absolute axial jet velocity, hm is the
mass transfer coefficient, Cs,eq(T) and Cs,∞ are the solvent vapor
volume fractions at the jet surface and far away from it, respec-
tively, T is temperature which is the same for polymer solution
and the surrounding air in the case of solution blowing, which is
assumed to be an isothermal process.

According to Ref. [22], the mass transfer coefficient is given by
the following expression

hm ¼ Da

2a
0:495Re1=3Sc1=2 (2)

where Re ¼ V2a/na and Sc ¼ na/Da are the Reynolds and Schimdt
numbers, respectively, with na being the kinematic viscosity of air
and Da being the solvent vapor diffusion coefficient in air.

The momentum balance in the straight part of the jet reads [7,18]

r
d
�
fV2�
dx

¼ dðsxxf Þ
dx

þ qt (3)

where r is the polymer solution density, sxx is the longitudinal
stress in the jet, and qt is the aerodynamic drag pulling the jet in the
axial direction, which is given by the following expression [23,24]

qt ¼ cparaðUa � VÞ2
�
2ðUa � VÞa

na

��0:81
(4)

In Eq. (4) c is an empirical constant discussed below, ra is the
air density, and Ua is the absolute velocity of air in the axial di-
rection. It should be emphasized that the empirical KaseeMatsuo
Eq. (4) incorporates the dependence of the aerodynamic drag on
the Reynolds number based on the relative velocity,
Rerelative ¼ 2(Ua�V)a/na, as Re�0:81

relative, which is characteristic of the
turbulent boundary layer (in distinction from the laminar
boundary layer where the dependence Re�0:5

relative would be ex-
pected [25e27]).

In addition, according to Refs. [7] and [18], the longitudinal
stress sxx is equal to the difference of the axial and radial deviatoric
stresses, txx and tyy, respectively, i.e. sxx ¼ txx�tyy. In flows with
strong uniaxial elongation, such as in solution blowing, the radial
component tyy is negligibly small compared to the axial one txx, and
sxx z txx [16]. In the uniaxial elongational flows, such as the elec-
trospinning and meltblown jets, a plausible description of the
rheological behavior of polymer solutions and melts is given by the
upper-convected Maxwell model (UCM) [7,15e18,21,22]

V
dtxx
dx

¼ 2
dV
dx

þ 2
m

q

dV
dx

� txx

q
(5)

where m and q are the viscosity and the relaxation time of polymer
solution, respectively.

Eqs. (1), (3) and (5) can be reduced to the following system of
two differential equations for two unknowns V and txx

dV
dx

¼ rkV � ðtxx=VÞðkþ f =qÞ þ qt
r0f0V0 � rkx� ðf =VÞðtxx þ 3m=qÞ (6)

dtxx
dx

¼ 1
V

�
2
dV
dx

ðtxx þ m=qÞ � txx=q

�
(7)

In these equations the jet cross-section f is given by

f ¼ 1
V
ðf0V0 � kxÞ (8)

where, as in Eq. (6) and hereinafter, subscript 0 denotes the values
in the initial cross-section which are given. Also, the constant k is
given by

k ¼ Da

2a
0:495Re1=3Sc1=2

�
Cs;eqðTÞ � Cs;∞

�
2p (9)

In addition, due to solvent evaporation the viscosity m and
relaxation time q vary with the polymer volume fraction Cp along
the jet as [7,22]

m ¼ m010
BðCm

p �Cm
p0Þ; q ¼ q0

Cp
Cp0

(10)

where B and m, m0 and q0 are the material parameters.
It should be emphasized that the loss of mass from the jet is

associated only to the solvent evaporation, and thus similarly to Eq.
(1) the solvent volume in a unit jet length Ms ¼ CsfV is subjected to
the following equation

dðCsfVÞ
dx

¼ �hm

�
Cs;eqðTÞ � Cs;∞

�
2pa (11)

where Cs is the volume ratio of solvent.
Then, integrating Eq. (11), we find Cs as

Cs ¼ Cs0f0V0 � kx
fV

(12)

Therefore, the polymer volume fraction Cp ¼ 1 � Cs is found
using Eqs. (12) and (8) as

Cp ¼ Cp0
1� kx=ðf0V0Þ

(13)

The latter equation provides us with the values of Cp needed to
find the viscosity and relaxation time using Eq. (10).

The system of Eqs. (6) and (7) is solved numerically using the
KuttaeMerson method with the boundary conditions

x ¼ 0 : V ¼ V0; txx ¼ txx0 (14)

where the values of the polymer feeding velocity V0 and the lon-
gitudinal stress txx0 at the nozzle exit are determined by the flow in
the nozzle and are, in principle known.

2.2. Perturbed part of the jet

The general quasi-one-dimensional theory of free liquid jets
moving in air provides us with two inter-related types of ap-
proaches to problems dealing with jet bending [7,18]. If the jet is
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