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This paper presents a framework for extending the height-function technique for the 
calculation of interface normals and curvatures to unstructured non-convex polyhedral 
meshes with application to the piecewise-linear interface calculation volume-of-fluid 
method. The methodology is developed with reference to a collocated node-based finite-
volume two-phase flow solver that utilizes the median-dual mesh, requiring a set of 
data structures and algorithms for non-convex polyhedral operations: truncation of a 
polyhedron by a plane, intersection of two polyhedra, joining of two convex polyhedra, 
volume enforcement of a polyhedron by a plane, and volume fraction initialization by a 
signed-distance function. By leveraging these geometric tools, a geometric interpolation 
strategy for embedding structured height-function stencils in unstructured meshes is 
developed. The embedded height-function technique is tested on surfaces with known 
interface normals and curvatures, namely cylinder, sphere, and ellipsoid. Tests are 
performed on the median duals of a uniform cartesian mesh, a wedge mesh, and a 
tetrahedral mesh, and comparisons are made with conventional methods. Across the 
tests, the embedded height-function technique outperforms contemporary methods and 
its accuracy approaches the accuracy that the traditional height-function technique 
exemplifies on uniform cartesian meshes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The volume-of-fluid (VOF) method is one of the most widely used formulations to simulate interfacial and free-surface 
flows [1]. In this method, the interface evolution is implicitly tracked using a discrete function, F , representing the volume 
fraction of the tagged fluid within a cell of the computational mesh. F is a discretized version of the fluid marker function, 
f , that is constant in each phase, jumps at the interface from 0 to 1, and follows the scalar advection equation,

∂ f

∂t
+ �v · ∇ f = 0, (1)

where �v is the velocity vector.
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The piecewise-linear interface calculation (PLIC) has become the standard interface representation within the VOF com-
munity [2]. PLIC-VOF methods describe the interface by a series of disconnected planes, each oriented by a unit normal, n̂, 
and positioned by a constant, C , such that n̂ · �x + C = 0. Two key steps in any PLIC representation include volume truncation 
by a fixed plane, i.e. determination of F given n̂ and C , and volume enforcement by a movable plane, i.e. determination of C
given n̂ and F . The importance of the volume truncation and enforcement operations has led researchers to develop analytic 
and geometric tools to expedite computations for rectangular and hexahedral elements [3], for triangular and tetrahedral 
elements [4], and for convex polyhedral elements [5]. In this paper, we extend the class of geometric tools to non-convex 
polyhedral meshes in order to implement the PLIC-VOF method in a collocated node-based finite-volume flow solver [6]. 
As evidenced by the volume enforcement and truncation operations, estimation of n̂ is key to the accuracy of any PLIC-VOF 
method.

The equations governing the motion of an unsteady, viscous, incompressible, immiscible two-fluid system are the Navier–
Stokes equations, augmented by a localized surface tension force,

ρ

(
∂ �v
∂t

+ �v · ∇�v
)

= −∇p + ∇ ·
(
μ

[
∇�v + {∇�v}T

])
− σκn̂δS ,

∇ · �v = 0,

κ = ∇ · n̂, (2)

where, ρ is the density, p is the pressure, μ is the viscosity, σ is the surface tension coefficient, κ is the interface curvature, 
and δS is the Dirac Delta function localized to the surface S . As evidenced by Eq. (2), in addition to accurately estimating n̂, 
the PLIC-VOF framework also needs to calculate the rate at which n̂ turns along the interface, i.e. the curvature, κ .

Determination of n̂ and κ in the VOF method is problematic due to the discontinuous nature of F . Nevertheless, various 
algorithms to calculate n̂ and κ have been proposed. The traditional Parker–Youngs (PY) method [7] uses simple difference 
formulas to calculate gradients in F for the estimation of n̂. The method has been implemented on nonorthogonal [8] and 
unstructured meshes [9]; however, the PY method is at most first-order accurate because n̂ for a rectilinear interface is 
not calculated exactly, a necessary condition for second-order accuracy [10]. The least-squares fit procedure [11,12] is more 
accurate than the PY method and has been extended to unstructured meshes [13]; however, it too does not satisfy the 
necessary condition for a second-order method. Several second-order methods for estimating n̂ have been proposed, namely 
the least-squares volume-of-fluid interface reconstruction algorithm (LVIRA) and the efficient least-squares volume-of-fluid 
interface reconstruction algorithm (ELVIRA) for structured grids [10], and the geometric least-squares (GLS) method for un-
structured grids [14], each able to reconstruct a rectilinear interface exactly. LVIRA orients n̂ such that the discrepancy in 
F from using the calculated linear interface over a neighborhood of cells is minimized in the least-squares sense. The pro-
cedure requires costly geometric iterations in which volume enforcement and volume truncation steps must be performed 
for each cell. ELVIRA bypasses the iterations by selecting n̂ amongst a set of candidates constructed from the centered, 
backward, and forward estimates in each direction. The GLS method follows the procedure of LVIRA, requiring geometric 
iterations within an unstructured framework – a prohibitively costly procedure. A well-known non-iterative method for es-
timating n̂ is the height-function (HF) technique. In the HF method, F is integrated in the cartesian direction closest to n̂
(approximated with a simpler method) to calculate a height, H . Slopes of a local H distribution in the other two cartesian 
directions are used to correct n̂ [15–17]. The HF method was shown to be second-order accurate with proper handling for 
particular alignments of the interface with respect to the grid lines [18,19]. In two dimensions, the method was extended 
to nonuniform rectangular grids [20] and, by adapting the definition of H and using a least-squares fit, to unstructured 
rectangular/triangular grids [21], both exhibiting second-order convergence in n̂.

As shown in Eq. (2), κ requires higher differentiability than that of n̂. To address the lack of differentiability of F , various 
methods have been posited to calculate κ . In the convolved VOF (CV) method, F is convolved with a smoothing kernel to 
provide a smoothed-out distribution from which the second derivates can be calculated [15,22]. The reconstructed-distance 
function (RDF) method builds a signed-distance function away from the interface to provide a smooth field from which κ
can be calculated [15]. The RDF technique was extended to unstructured rectangular/triangular meshes [23]. Both the CV 
and RDF methods have shown lack of convergence under refinement on structured [15] and unstructured [21] meshes. In 
addition to the calculation of n̂, the HF method has been used to calculate κ [15], demonstrating second-order accuracy 
over a series of canonical test problems on uniform cartesian meshes [18,24,25]. In two dimensions, the calculation of κ
with the HF method was extended to nonuniform rectangular grids without loss of the second-order convergence [20]. 
The HF technique was extended to two-dimensional unstructured rectangular/triangular grids [21]; however, the reframed 
definition of H required quadric fitting to calculate κ , and the method was less than first-order accurate. An HF method 
with n̂-aligned columns of variable H was shown to improve the κ calculation accuracy on coarse meshes; however, it 
required a neighborhood search step to compute intersections with the mesh and the columns [26]. The HF method was 
also adapted to quad and octree discretizations [27], where cartesian stencils of varying H (in addition to parabolic fitting for 
stencils with ill-defined H) were used to obtain second-order accuracy. To the best of our knowledge, the HF technique for 
calculating n̂ and κ has not been extended to three-dimensional unstructured meshes. Furthermore, a convergent method 
to calculate κ on unstructured meshes has not been published.

In this paper, we extend the HF technique for estimating n̂ and κ to three-dimensional unstructured non-convex poly-
hedral meshes. The method embeds structured HF stencils in the unstructured mesh and interpolates the mesh F data to 
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