Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Computational Physics

www.elsevier.com/locate/jcp

Accurate interface normal and curvature estimates on three-dimensional unstructured non-convex polyhedral meshes

Christopher B. Ivey [∗], Parviz Moin

Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA

A R T I C L E I N F O A B S T R A C T

Article history: Received 27 January 2015 Received in revised form 13 July 2015 Accepted 17 July 2015 Available online 31 July 2015

Keywords: Two-phase flow Volume of fluid Height function Unstructured grid Curvature Non-convex polyhedron

This paper presents a framework for extending the height-function technique for the calculation of interface normals and curvatures to unstructured non-convex polyhedral meshes with application to the piecewise-linear interface calculation volume-of-fluid method. The methodology is developed with reference to a collocated node-based finitevolume two-phase flow solver that utilizes the median-dual mesh, requiring a set of data structures and algorithms for non-convex polyhedral operations: truncation of a polyhedron by a plane, intersection of two polyhedra, joining of two convex polyhedra, volume enforcement of a polyhedron by a plane, and volume fraction initialization by a signed-distance function. By leveraging these geometric tools, a geometric interpolation strategy for embedding structured height-function stencils in unstructured meshes is developed. The embedded height-function technique is tested on surfaces with known interface normals and curvatures, namely cylinder, sphere, and ellipsoid. Tests are performed on the median duals of a uniform cartesian mesh, a wedge mesh, and a tetrahedral mesh, and comparisons are made with conventional methods. Across the tests, the embedded height-function technique outperforms contemporary methods and its accuracy approaches the accuracy that the traditional height-function technique exemplifies on uniform cartesian meshes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The volume-of-fluid (VOF) method is one of the most widely used formulations to simulate interfacial and free-surface flows [\[1\].](#page--1-0) In this method, the interface evolution is implicitly tracked using a discrete function, *F*, representing the volume fraction of the tagged fluid within a cell of the computational mesh. *F* is a discretized version of the fluid marker function, *f* , that is constant in each phase, jumps at the interface from 0 to 1, and follows the scalar advection equation,

$$
\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f = 0,\tag{1}
$$

where \vec{v} is the velocity vector.

<http://dx.doi.org/10.1016/j.jcp.2015.07.055> 0021-9991/© 2015 Elsevier Inc. All rights reserved.

^{*} Corresponding author. Tel.: +1 ⁷⁵⁷ ⁵⁷⁰ 2369. *E-mail addresses:* civey@stanford.edu (C.B. Ivey), moin@stanford.edu (P. Moin).

The piecewise-linear interface calculation (PLIC) has become the standard interface representation within the VOF com-munity [\[2\].](#page--1-0) PLIC-VOF methods describe the interface by a series of disconnected planes, each oriented by a unit normal, \hat{n} , and positioned by a constant, *C*, such that $\hat{n} \cdot \vec{x} + C = 0$. Two key steps in any PLIC representation include volume truncation by a fixed plane, i.e. determination of *F* given *n*ˆ and *C*, and volume enforcement by a movable plane, i.e. determination of *C* given \hat{n} and *F*. The importance of the volume truncation and enforcement operations has led researchers to develop analytic and geometric tools to expedite computations for rectangular and hexahedral elements [\[3\],](#page--1-0) for triangular and tetrahedral elements [\[4\],](#page--1-0) and for convex polyhedral elements [\[5\].](#page--1-0) In this paper, we extend the class of geometric tools to non-convex polyhedral meshes in order to implement the PLIC-VOF method in a collocated node-based finite-volume flow solver [\[6\].](#page--1-0) As evidenced by the volume enforcement and truncation operations, estimation of \hat{n} is key to the accuracy of any PLIC-VOF method.

The equations governing the motion of an unsteady, viscous, incompressible, immiscible two-fluid system are the Navier– Stokes equations, augmented by a localized surface tension force,

$$
\rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} \right) = -\nabla p + \nabla \cdot \left(\mu \left[\nabla \vec{v} + \left\{ \nabla \vec{v} \right\}^T \right] \right) - \sigma \kappa \hat{n} \delta_S,
$$

\n
$$
\nabla \cdot \vec{v} = 0,
$$

\n
$$
\kappa = \nabla \cdot \hat{n},
$$
\n(2)

where, $ρ$ is the density, p is the pressure, $μ$ is the viscosity, $σ$ is the surface tension coefficient, $κ$ is the interface curvature, and δ_S is the Dirac Delta function localized to the surface *S*. As evidenced by Eq. (2), in addition to accurately estimating \hat{n} , the PLIC-VOF framework also needs to calculate the rate at which *n*ˆ turns along the interface, i.e. the curvature, *κ*.

Determination of \hat{n} and κ in the VOF method is problematic due to the discontinuous nature of *F*. Nevertheless, various algorithms to calculate \hat{n} and κ have been proposed. The traditional Parker–Youngs (PY) method [\[7\]](#page--1-0) uses simple difference formulas to calculate gradients in *F* for the estimation of \hat{n} . The method has been implemented on nonorthogonal [\[8\]](#page--1-0) and unstructured meshes [\[9\];](#page--1-0) however, the PY method is at most first-order accurate because *n*ˆ for a rectilinear interface is not calculated exactly, a necessary condition for second-order accuracy [\[10\].](#page--1-0) The least-squares fit procedure $[11,12]$ is more accurate than the PY method and has been extended to unstructured meshes [\[13\];](#page--1-0) however, it too does not satisfy the necessary condition for a second-order method. Several second-order methods for estimating \hat{n} have been proposed, namely the least-squares volume-of-fluid interface reconstruction algorithm (LVIRA) and the efficient least-squares volume-of-fluid interface reconstruction algorithm (ELVIRA) for structured grids [\[10\],](#page--1-0) and the geometric least-squares (GLS) method for unstructured grids [\[14\],](#page--1-0) each able to reconstruct a rectilinear interface exactly. LVIRA orients *n*ˆ such that the discrepancy in *F* from using the calculated linear interface over a neighborhood of cells is minimized in the least-squares sense. The procedure requires costly geometric iterations in which volume enforcement and volume truncation steps must be performed for each cell. ELVIRA bypasses the iterations by selecting \hat{n} amongst a set of candidates constructed from the centered, backward, and forward estimates in each direction. The GLS method follows the procedure of LVIRA, requiring geometric iterations within an unstructured framework – a prohibitively costly procedure. A well-known non-iterative method for estimating \hat{n} is the height-function (HF) technique. In the HF method, *F* is integrated in the cartesian direction closest to \hat{n} (approximated with a simpler method) to calculate a height, *H*. Slopes of a local *H* distribution in the other two cartesian directions are used to correct \hat{n} [\[15–17\].](#page--1-0) The HF method was shown to be second-order accurate with proper handling for particular alignments of the interface with respect to the grid lines [\[18,19\].](#page--1-0) In two dimensions, the method was extended to nonuniform rectangular grids [\[20\]](#page--1-0) and, by adapting the definition of *H* and using a least-squares fit, to unstructured rectangular/triangular grids [\[21\],](#page--1-0) both exhibiting second-order convergence in *n*ˆ.

As shown in Eq. (2), *κ* requires higher differentiability than that of *n*ˆ. To address the lack of differentiability of *F* , various methods have been posited to calculate *κ*. In the convolved VOF (CV) method, *F* is convolved with a smoothing kernel to provide a smoothed-out distribution from which the second derivates can be calculated [\[15,22\].](#page--1-0) The reconstructed-distance function (RDF) method builds a signed-distance function away from the interface to provide a smooth field from which *κ* can be calculated [\[15\].](#page--1-0) The RDF technique was extended to unstructured rectangular/triangular meshes [\[23\].](#page--1-0) Both the CV and RDF methods have shown lack of convergence under refinement on structured [\[15\]](#page--1-0) and unstructured [\[21\]](#page--1-0) meshes. In addition to the calculation of \hat{n} , the HF method has been used to calculate κ [\[15\],](#page--1-0) demonstrating second-order accuracy over a series of canonical test problems on uniform cartesian meshes [\[18,24,25\].](#page--1-0) In two dimensions, the calculation of *κ* with the HF method was extended to nonuniform rectangular grids without loss of the second-order convergence [\[20\].](#page--1-0) The HF technique was extended to two-dimensional unstructured rectangular/triangular grids [\[21\];](#page--1-0) however, the reframed definition of *H* required quadric fitting to calculate *κ*, and the method was less than first-order accurate. An HF method with *n*ˆ -aligned columns of variable *H* was shown to improve the *κ* calculation accuracy on coarse meshes; however, it required a neighborhood search step to compute intersections with the mesh and the columns [\[26\].](#page--1-0) The HF method was also adapted to quad and octree discretizations [\[27\],](#page--1-0) where cartesian stencils of varying *H* (in addition to parabolic fitting for stencils with ill-defined *H*) were used to obtain second-order accuracy. To the best of our knowledge, the HF technique for calculating *n*ˆ and *κ* has not been extended to three-dimensional unstructured meshes. Furthermore, a convergent method to calculate *κ* on unstructured meshes has not been published.

In this paper, we extend the HF technique for estimating \hat{n} and *κ* to three-dimensional unstructured non-convex polyhedral meshes. The method embeds structured HF stencils in the unstructured mesh and interpolates the mesh *F* data to Download English Version:

<https://daneshyari.com/en/article/518076>

Download Persian Version:

<https://daneshyari.com/article/518076>

[Daneshyari.com](https://daneshyari.com)