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A vertex centred Jameson–Schmidt–Turkel (JST) finite volume algorithm was recently 
introduced by the authors (Aguirre et al., 2014 [1]) in the context of fast solid isothermal 
dynamics. The spatial discretisation scheme was constructed upon a Lagrangian two-
field mixed (linear momentum and the deformation gradient) formulation presented as 
a system of conservation laws [2–4]. In this paper, the formulation is further enhanced 
by introducing a novel upwind vertex centred finite volume algorithm with three key 
novelties. First, a conservation law for the volume map is incorporated into the existing 
two-field system to extend the range of applications towards the incompressibility limit 
(Gil et al., 2014 [5]). Second, the use of a linearised Riemann solver and reconstruction 
limiters is derived for the stabilisation of the scheme together with an efficient edge-based 
implementation. Third, the treatment of thermo-mechanical processes through a Mie–
Grüneisen equation of state is incorporated in the proposed formulation. For completeness, 
the study of the eigenvalue structure of the resulting system of conservation laws is 
carried out to demonstrate hyperbolicity and obtain the correct time step bounds for non-
isothermal processes. A series of numerical examples are presented in order to assess the 
robustness of the proposed methodology. The overall scheme shows excellent behaviour in 
shock and bending dominated nearly incompressible scenarios without spurious pressure 
oscillations, yielding second order of convergence for both velocities and stresses.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In practical engineering applications involving extremely complex geometries, meshing typically represents a large por-
tion of the overall design and analysis time. In the computational mechanics community, the ability to perform calculations 
on tetrahedral meshes has become increasingly important. For these reasons, the automated tetrahedral mesh generators by 
means of Delaunay and advancing front techniques [6] have recently received increasing attention in a number of important 
application areas, such as cardiovascular tissue modelling [7], crash impact simulation [8], blast and fracture mechanics and 
complex multi-physics problems [9–12].

Unfortunately, modern tetrahedral element technology in solid mechanics (e.g. ANSYS AUTODYN, LS-DYNA, ABAQUS/Ex-
plicit, Altair HyperCrash), typically based on the use of the traditional Finite Element based second order displacement 
formulation [13,14], possesses several distinct disadvantages, namely: (1) Reduced order of convergence for strains and 
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stresses [15,16]; (2) High frequency noise in the vicinity of shocks [17–20]; (3) Stability issues associated to shear locking, 
volumetric locking [21] and pressure checkerboard instabilities [22].

To address the shortcomings mentioned above, a wide variety of enhanced discretisation technologies have been devel-
oped. As an example, for the case of nearly incompressible materials, the mean dilatational hexahedral formulation [23–25]
where constant interpolation is used for the calculation of volumetric stresses [26] has attracted industrial interest, as 
the modifications associated to the classical displacement based formulation are minor. High order elements [27–29] (also 
known as p-refinement) can alternatively be used. However, the increase in the number of integration points can drastically 
reduce the computational efficiency of these schemes in comparison with low order approaches [30], specially when either 
complex constitutive laws (i.e. anisotropic visco-elastic models are often used in the medical field [31]) or contact surfaces 
[32], or a combination of both, must be modelled.

The success of nodally integrated tetrahedral elements was first reported in [33], where the volumetric strain energy 
functional was approximated through averaged nodal pressures. Extensive efforts have since been made to further develop 
this class of averaged nodal strain technologies with the use of various types of stabilisation [34–39]. Despite exhibiting 
geometric locking-free behaviours, the resulting formulation still suffers from spurious hydrostatic pressure fluctuations 
when simulating nearly incompressible materials.

Several authors have presented alternative p–F mixed formulations in both Lagrangian solid and gas dynamics [1–4,
40–42]. Specifically, in references [1,3,40,41], the authors presented a mixed conservation law for applications in Lagrangian 
fast solid dynamics, which are spatially discretised using tailor-made CFD technology. A variant of this approach has been 
presented in [9,10] in the context of fluid–structure interaction. The use of a mixed approach proved to be very efficient 
in large strain solid dynamics, circumventing the above-mentioned drawbacks for the traditional displacement based tech-
niques. Early attempts at applying CFD-like numerical techniques in the context of displacement based computational solid 
dynamics are reported in references [2,43–48]. Eulerian Finite Volume Godunov methods, typically used for modelling com-
pressible gas dynamics, were employed to model plastic flows in solid dynamics [49–51]. Furthermore, this methodology 
was also adapted to a Lagrangian framework by several authors [52,53], but restricted to two dimensions.

The use of a Total Lagrangian description of the motion has clear advantages in the context of solid dynamics. Firstly, 
all the calculations are carried out based on the undeformed mesh leading to a simple algorithm. Secondly, the Lagrangian 
setting follows the evolution of any material particle, which is of paramount importance in history dependent constitu-
tive laws. Finally, the imposition of free surface boundary conditions is straightforward. On the contrary, the accuracy of 
the scheme can be adversely affected when undergoing very large deformations. This can be circumvented by employing 
adaptive remeshing techniques.

More recently, the p–F formulation was improved in [5] for the case of nearly incompressible materials, by means 
of an additional conservation law for the Jacobian of the deformation J (widely known as volume map conservation law 
[42,54–57]), providing extra flexibility for the calculation of the volumetric stress. This innovative idea extended the range 
of use of the formulation to nearly and fully incompressible media. Moreover, further enhancement of the framework has 
recently been reported by the authors [58], when considering materials governed by a polyconvex constitutive law [59], 
enabling the symmetrisation of the resulting hyperbolic system of equations.

In this paper, the mixed p–F – J is discretised via an adapted upwind vertex centred Finite Volume Method (FVM) for 
linear tetrahedral meshes [60]. One clear advantage of using the upwind method is the ability to introduce physically-
based numerical dissipation into the formulation derived from the Rankine–Hugoniot jump conditions. In addition, modern 
shock capturing techniques can be easily incorporated taking advantage of the conservative formulation. This can dramat-
ically improve the performance of the algorithm in the vicinity of sharp spatial gradients. In this paper, a Total Variation 
Dimishing (TVD) space–time approach [3] is used, combining suitable slope limiters with a one-step two-stage explicit TVD 
Runge–Kutta time integrator.

Furthermore, the current paper extends the applicability of the formulation to include the consideration of thermo-
mechanical processes. This requires the inclusion of the first law of thermodynamics (or known as conservation of the 
total energy E) and the satisfaction of the second law through the entropy production. The fully coupled mixed p–F – J –E
system will then be supplemented with the simplest possible thermal-mechanical constitutive law for solids, namely Mie–
Grüneisen equation of state [61]. For completeness and ease of understanding, the paper will present an eigenvalue analysis 
of the complete set of mixed system to ensure the satisfaction of the hyperbolicity, and thus material stability. A series 
of numerical examples will be examined to assess the robustness and capabilities of the mixed algorithm, yielding second 
order of convergence for velocities and stresses.

The outline of the present paper is as follows. Section 2 introduces a set of generalised governing equations for large 
strain non-isothermal fast dynamics, supplemented with appropriate mechanical constitutive models and equations of state. 
This section ends with the study of the eigenstructure of the problem. Section 3 describes the methodology of edge-based 
vertex centred FVM. Linear reconstruction, slope limiter and Riemann solver are also presented. Section 4 introduces the 
TVD Runge–Kutta time integrator used for temporal discretisation and some necessary numerical projections to preserve the 
angular momentum. Section 6 summarises the solution procedure of the proposed methodology. In Section 7, an extensive 
set of numerical examples is presented to assess the performance of the proposed method and to draw some comparisons 
against previous results published by the authors [3,5]. Finally, Section 8 summarises some concluding remarks and current 
directions of research.
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